
www.manaraa.com

Connecting the usability and software engineering life cycles through a
communication-fostering software development framework and cross-

pollinated computer science courses

By

Pardha S. Pyla

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State
University in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

In

Computer Science and Applications

Research directed by: Dr. H. Rex Hartson

 Committee: Dr. H. Rex Hartson, Dr. James D. Arthur, Dr. Tonya L. Smith-Jackson,
Dr. Manuel A. Pérez-Quiñones, and Dr. Deborah Hix.

September 10, 2007
Blacksburg, Virginia

Keywords: Software engineering, usability engineering, integration, unified framework,
life cycle representation, influencing factors, Ripple.

Copyright 2007, Pardha S. Pyla

www.manaraa.com

UMI Number: 3288673

 Copyright 2007

 by

 Pyla, Pardha S.

 All rights reserved.

 __

 UMI Microform 3288673

 Copyright 2008 ProQuest Information and Learning Company.

 All rights reserved. This microform edition is protected against

 unauthorized copying under Title 17, United States Code.

 __

 ProQuest Information and Learning Company
 789 East Eisenhower Parkway

 PO Box 1346
 Ann Arbor, MI 48106-1346

www.manaraa.com

 ii

Connecting the usability and software engineering life cycles through a
communication-fostering software development framework and cross-

pollinated computer science courses

By

Pardha S. Pyla

Abstract
Interactive software systems have both functional and user interface components. User
interface design and development requires specialized usability engineering (UE)
knowledge, training, and experience in topics such as psychology, cognition, specialized
design guidelines, and task analysis. The design and development of a functional core
requires specialized software engineering (SE) knowledge, training, and experience in
topics such as algorithms, data structures, software architectures, calling structures, and
database management.

Given that the user interface and the functional core are two closely coupled components
of an interactive software system, with each constraining the design of the other, there is
a need for the SE and UE life cycles to be connected to support communication among
roles between the two development life cycles. Additionally, there is a corresponding
need for appropriate computer science curricula to train the SE and UE roles about the
connections between the two processes.

In this dissertation, we connected the SE and UE life cycles by creating the Ripple project
development environment which fosters communication between the SE and UE roles
and by creating a graduate-level cross-pollinated SE-UE joint course offering, with
student teams spanning the two classes, to educate students about the intricacies of
interactive-software development. Using this joint course we simulated different
conditions of interactive-software development (i.e. with different types of project
constraints and role playing) and assigned different teams to these conditions. As part of
semester-long class projects these teams developed prototype systems for a real client
using their assigned development condition. Two of the total of eight teams in this study
used the Ripple framework.

As part of this experimental course offering, various instruments were employed
throughout the semester to assess the effectiveness of a framework like Ripple and to
investigate candidate factors that impact the quality of product and process of interactive-
software systems. The study highlighted the importance of communication among the SE
and UE roles and exemplified the need for the two roles to respect each other and to have
the willingness to work with one another. Also, there appears to exist an inherent conflict
of interest when the same people play both UE and SE roles as they seem to choose user
interface features that are easy to implement and not necessarily easy to use by system’s
target users. Regarding pedagogy, students in this study indicated that this joint SE-UE
course was more useful in learning about interactive-software development and that it
provided a better learning experience than traditional SE-only or UE-only courses.

www.manaraa.com

 iii

Don’t panic!

www.manaraa.com

 iv

To
My mom, dad, and brother
 … for all the love

The 32 Hokies lost on April 16th 2007

 … for all the promise

www.manaraa.com

 v

Acknowledgements

I would like to acknowledge all the help, guidance, and support of my dissertation advisory
committee:
• Dr. H. Rex Hartson, my advisor, for directing this research from conception through execution,

for collaborating with me in running the evaluation components in this work, for teaching me
the nuances of technical writing, for the countless hours he spent “debugging” my dissertation,
and most importantly, for being a wonderful role model, mentor, guide, friend, philosopher,
and a true inspiration in not only my research but life in general

• Dr. James D. Arthur for all the insightful debates on which is more important: software
engineering or usability engineering? (he is yet to realize the truth that usability is, of course,
more important), and for collaborating with me in running the evaluation components in this
work

• Dr. Tonya L. Smith-Jackson for all her encouragement and extensive help with, and discussion
about, experimental design and analysis

• Dr. Manuel A. Pérez-Quiñones for his unique insights into user interface software concepts, for
his overall encouragement and guidance, and for supporting me through the past two semesters

• Dr. Deborah Hix for changing the direction of this dissertation (for the better) with one radical
idea back in 2004

I would also like to acknowledge:
• My family for their unconditional love and encouragement, without which, this dissertation

would not have been possible
• Dr. Scott McCrickard for his constant encouragement and for supporting me the past two

summers
• Dr. Jonathan Howarth for being a friend, his help as the co-GTA of the joint CS5704/CS5714

offering in Fall 2006, and for making the past few years interesting with all the deeply
philosophical discussions on usability of Microsoft products

• Dr. Cortney Martin for her help with statistical analysis in JMP and for introducing me to the
joy of fishing for the ever elusive “statistical significance”

• Dr. Robert Capra for his encouragement and for all the interesting conversations in 3160
• Dr. Glenda Scales for having that one conversation with me which gave a whole different

perspective on how to look at my data and for her encouragement
• Kamran Razvan from ClickAndPledge.com, for being kind enough to provide test accounts for

credit card authentication for all the teams in my evaluation
• Rachel Smith, Rachel Horton, and Alec Selz from the Horticulture Club for their dedication

and commitment as clients in my evaluation, and for showing me how cool horticulture is
• All the students in CS5704 and CS5714 who went out of their way to write detailed entries in

their journals and for not complaining too much about the extra work they had to do as a result
of the evaluation component in the class

• The staff at the Department of Computer Science, especially Dr. Calvin Ribbens, Ginger,
Rachel, Melanie, Carol, and Tess, for their help in all things administrative

• All my friends, colleagues, and special ones who with their encouragement and support made
my doctoral journey pleasant and fun. It is impossible to list all of them here, but some names
that come to mind are Aparna, Beth, Boby, Catherine, Chris(s), David, Edgardo, Emilee,
Jamika, Jean, Jian, Lauren, Laurian, Lee, Manas, Meg, Mehdi, Michelle, Miten, Monica,
Nicholas, Nicole, Prachi, Ramesh, Ramya, Ranjit, Rhonda, Rieky, Sandeep, Sarah, Satish,
Shahtab, Tej, Uma, Yonca, Young-Lan, ...

www.manaraa.com

 vi

Table of Contents

1 CHAPTER ONE: INTRODUCTION.. 1

1.1 CONTEXT ... 1
1.2 PROBLEM STATEMENT... 3
1.3 BACKGROUND ... 4

1.3.1 Similarities between life cycles ... 4
1.3.2 Differences between life cycles... 5
1.3.3 Different levels of iteration and evaluation ... 6
1.3.4 Differences in terminology.. 7
1.3.5 Differences in requirements representation ... 8
1.3.6 Change management ... 9
1.3.7 Quality in the development of interactive systems .. 10

1.4 CURRENT PRACTICES AND MOTIVATION ... 14
1.4.1 Communication among different life cycle roles... 15
1.4.2 Training SE and UE roles within computer science curricula ... 22

1.5 RESEARCH GOALS ... 24
1.6 RESEARCH APPROACH ... 25
1.7 SCOPE AND LIMITATIONS... 28
1.8 OPERATING ASSUMPTIONS AND CONSTRAINTS.. 28
1.9 RESEARCH CONTRIBUTIONS .. 29

2 CHAPTER TWO: HISTORY AND RELATED WORK .. 32
2.1 A TRUE STORY .. 32
2.2 HISTORICAL BACKGROUND ... 34

2.2.1 The pioneering years – 1966 and before.. 34
2.2.2 The time-sharing/structured programming years – 1967 to 1977 .. 36
2.2.3 The GUI/OO years – 1978 to 1988 ... 37
2.2.4 The Internet years – 1989 to 1999 ... 38
2.2.5 The ubiquitous computing years and the start of the social networking era– 1999 to present 39

2.3 BRIDGING THE GAPS BETWEEN SE AND UE... 41
2.3.1 Embedding one life cycle’s techniques into another ... 42
2.3.2 Architectures that support the needs of one process in the other ... 43
2.3.3 Customizable life cycles and frameworks ... 44
2.3.4 CS education and curricula standards.. 46
2.3.5 Standards on life cycle processes .. 48
2.3.6 Scenarios and use cases as bridges .. 49
2.3.7 A common framework approach ... 50

2.4 SUMMARY.. 51
3 CHAPTER THREE: RIPPLE DESCRIPTION MODEL ... 52

3.1 INTRODUCTION AND BACKGROUND... 52
3.2 RDM ... 53
3.3 LIFE CYCLE PROCESS DESCRIPTION LANGUAGE.. 53

3.3.1 Language grammar and vocabulary .. 53
3.3.2 Work activities and work products .. 54
3.3.3 Blocks of work activities ... 56
3.3.4 Projection functions... 61
3.3.5 Selection/filtering of work activities ... 62

3.4 THE MAPPINGS .. 62
3.4.1 Boolean state variables .. 63
3.4.2 Time-based events... 67
3.4.3 Trigger events.. 70
3.4.4 Motivation for mapping components .. 70
3.4.5 Structure of mappings ... 73

3.5 SUMMARY.. 74

www.manaraa.com

 vii

4 CHAPTER FOUR: RIPPLE IMPLEMENTATION FRAMEWORK... 75
4.1 INTRODUCTION .. 75
4.2 COMPONENTS OF THE RIPPLE IMPLEMENTATION FRAMEWORK ... 76

4.2.1 Workings of a software-based Ripple implementation.. 76
4.2.2 Project declarations via the Ripple project definition subsystem .. 77
4.2.3 Ripple constraint subsystem.. 78
4.2.4 Ripple repository subsystem.. 81

4.3 POTENTIAL DOWNSIDES OF THE RIF.. 84
4.4 SUMMARY.. 84

5 CHAPTER FIVE: RIPPLE IMPLEMENTATION INSTANCE.. 86
5.1 INTRODUCTION .. 86
5.2 COMPONENTS OF THE RIPPLE SYSTEM IMPLEMENTATION INSTANCE....................................... 86

5.2.1 Project definition subsystem.. 87
5.2.2 Ripple constraint subsystem.. 89
5.2.3 Ripple repository subsystem.. 93

5.3 SUMMARY.. 94
6 CHAPTER SIX: AN EXPLORATORY STUDY ... 95

6.1 INTRODUCTION .. 95
6.1.1 Full summative study not feasible ... 95
6.1.2 Alternative kinds of studies and our approach... 96

6.2 RESEARCH DESIGN .. 98
6.3 PROCEDURE ... 99

6.3.1 Class setup and team distribution .. 100
6.3.2 Project objectives and deliverables.. 101
6.3.3 Project clients .. 102
6.3.4 Evaluation focus and specific hypotheses ... 104
6.3.5 Evaluation metrics... 105

6.4 CONFOUNDING FACTORS AND OTHER ISSUES ... 118
6.4.1 Conflict of ethical and research objectives .. 118
6.4.2 Experimenter analyzing all data from the study .. 118
6.4.3 Unequal enrollment numbers in the two classes.. 119
6.4.4 Experimenter being a GTA for one of the courses .. 119
6.4.5 Team balancing issues... 119
6.4.6 Other issues ... 120

6.5 CONSTRAINTS AND LIMITATIONS... 120
6.6 SUMMARY OF EVALUATION PLAN ... 121

7 CHAPTER SEVEN: ANALYSIS AND RESULTS .. 122
7.1 AN INVESTIGATIVE APPROACH TO ANALYSIS.. 122
7.2 ANALYSIS PROCEDURES AND ISSUES ... 122

7.2.1 Overall product comparison .. 122
7.2.2 Journal analysis ... 124
7.2.3 Email analysis ... 125
7.2.4 End-of-semester symposium ... 132
7.2.5 Group interviews ... 132
7.2.6 Surveys.. 132
7.2.7 Client feedback.. 133
7.2.8 Experimenter observations .. 133
7.2.9 Team level analysis ... 133

7.3 HYPOTHESES AND DATA ANALYSES.. 133
7.3.1 Hypothesis H1.a .. 134
7.3.2 Hypothesis H1.b .. 142
7.3.3 Hypothesis H1.c .. 154
7.3.4 Hypothesis H2... 173

7.4 EXPLORATORY ASPECTS AND POTENTIAL QUALITY FACTORS .. 175
7.4.1 Need for a project leader ... 176
7.4.2 Usefulness of a Ripple-like frameworks.. 177

www.manaraa.com

 viii

7.4.3 Pedagogical value of student personal journals ... 180
7.4.4 Use of real clients for group projects... 181
7.4.5 Scheduling overhead in graduate programs... 183

7.5 SUMMARY OF ANALYSES AND RESULTS .. 184
8 CONCLUSIONS.. 185

8.1 INTRODUCTION .. 185
8.2 IMPORTANCE OF COMMUNICATION AND USEFULNESS OF RIPPLE FRAMEWORK 185
8.3 INHERENT CONFLICT OF INTEREST IN DUAL EXPERTS ... 185
8.4 FACTORS THAT PREEMPT COMMUNICATION.. 186
8.5 INERTIA OF INTERACTION BETWEEN ROLES THAT COME TOGETHER LATE IN THE PROJECT. 187
8.6 NEED FOR UNBIASED PROJECT LEADER... 187
8.7 IMPORTANCE OF CROSS-POLLINATED SE-UE COURSES .. 188

REFERENCES ... 189
APPENDIX A: SE DEMOGRAPHIC SURVEY... 197
APPENDIX B: UE DEMOGRAPHIC SURVEY .. 198
APPENDIX C: QUESTIONNAIRE PERTAINING TO PROJECT EXPERIENCE........................ 199
APPENDIX D: QUESTIONNAIRE PERTAINING TO JOINT SE-UE COURSE EXPERIENCE 206
APPENDIX E: IRB INFORMED CONSENT AND APPROVAL .. 208
APPENDIX F: SAMPLE JOURNAL ENTRIES .. 213
APPENDIX G: GROUP PROJECT TIMETABLE AND SCHEDULE.. 214
APPENDIX H: CURRICULUM VITA.. 216

www.manaraa.com

 ix

List of Figures

Figure 1: Usability engineering life cycle .. 2
Figure 2: Software engineering life cycle... 3
Figure 3: Current practices – SE and UE processes without connections .. 5
Figure 4: Asymmetry between the SE and UE life cycles.. 6
Figure 5: Quality types in the context of interactive-software development .. 12
Figure 6: Work activities in a typical UE life cycle ... 55
Figure 7: A typical UE life cycle with scheduled dates.. 60
Figure 8: Boolean state values for work activities.. 63
Figure 9: Boolean state values for work products .. 64
Figure 10: Boolean state value for developer insights.. 64
Figure 11: Boolean state value for a calendar event ... 66
Figure 12: Derivative function of Boolean state variables ... 68
Figure 13: Time-based events for work activities .. 69
Figure 14: Dependency relationships among work activities ... 70
Figure 15: Dependency relationships between work activities and/or their projections............................... 71
Figure 16: Dependency relationships between and within the two life cycles ... 72
Figure 17: Communication needs between work activities and/or their projections 72
Figure 18: The Ripple Implementation Framework ... 76
Figure 19: SE life cycle description ... 88
Figure 20: UE life cycle description... 89
Figure 21: Group email interface as a work product repository ... 93
Figure 22: Experimental Design... 98
Figure 23: Example of deriving metrics from goals (adapted from Figure 3.2 in (Fenton and Pfleeger,
1997)) ... 111
Figure 24: GQM framework applied to Ripple framework .. 114
Figure 25: Sample data from overall feature comparison analysis ... 123
Figure 26: Total value index of all teams, showing relative standing of Team C 134
Figure 27: Total number of features per team, showing relative standing of Team C................................ 135
Figure 28: Condition-level comparison by range for value index and total features.................................. 135
Figure 29: Team C: Individual person-hours reported as worked, totaled from individual journals.......... 137
Figure 30: Total value index of all teams, showing the relative standing of the A teams 143
Figure 31: Total number of features per team, showing relative standing of the A teams 143
Figure 32: Total value index of all teams, showing relative standing of B teams 155
Figure 33: Total number of features per team, showing the relative standing of the B teams.................... 156
Figure 34: Total value index of all teams, showing relative standing of the D teams 170
Figure 35: Total number of features per team, showing the relative standing of all D teams 171
Figure 36: Mean response (plus SE) for student perception of value in joint SE-UE curricula 173
Figure 37: Mean response (plus SE) for student perception of learning in joint SE-UE courses 174
Figure 38: Mean response (plus SE) for learning experience based on development condition 175
Figure 39: Mean response (plus SE) for student perception of need for a project leader 177
Figure 40: Mean response (plus SE) indicating student perception of usefulness and importance of
coordination messages.. 178

www.manaraa.com

 x

Figure 41: Mean response (plus SE) for student perception of usefulness and importance of constraint and
dependency messages... 179
Figure 42: Mean response (plus SE) indicating student perception of usefulness and importance of
synchronization messages .. 180
Figure 43: Mean response (plus SE) for student perception of better learning experience because of real
clients ... 182
Figure 44: Mean response (plus SE) of student perception of more realistic understanding of system
requirements because of real clients ... 182
Figure 45: Percentage of communication units spent on scheduling tasks per team 183

List of Tables

Table 1: Coordination mappings used in this Ripple Instance ... 90
Table 2: Dependency mappings between the two life cycles ... 91
Table 3: Examples from message repository.. 92
Table 4. Experimental setup and team distribution. ... 99
Table 5: Numeric values used to calculate value index.. 123

www.manaraa.com

 1

1 Chapter One: Introduction

1.1 Context
Interactive software systems have both functional and user interface parts. Although the

separation of code into two clearly identifiable components is not always possible, the

two parts exist conceptually and each must be developed on its own terms with its own

roles for developers. We use the term “developer” to refer to someone who has the skills

to participate in any stage of either the functional or user-interface parts of system

development, and not just on the functional software side.

The user-interface part, which often accounts for half or more of the total lines of code

(Myers and Rosson, 1992), begins as an interaction design and is ultimately implemented

in user interface software. Interaction design requires specialized usability engineering

(UE) knowledge, training, and experience in topics such as human psychology, cognition,

visual perception, specialized design guidelines, task analysis, etc. Traditionally, the

concepts, theory and techniques associated with the user interface (UI) design domain are

taught as a part of Human Computer Interaction (HCI) courses in most computer science

departments. The goal of UE is to create systems with measurably high usability, i.e.,

systems that are easy to learn, easy to use, and satisfying to their users. A practical

objective is also to provide interaction design that can be used to build the user interface

component of a system by software engineers. We define the UE role as that of the

developer (sometimes called the interaction developer) who has responsibility for

creating such interaction designs.

The functional part of a software system, sometimes called the functional core, is

manifest as the non-user-interface software. The design and development of this

functional core requires specialized software engineering (SE) knowledge, training, and

experience in topics such as algorithms, data structures, software architectures, calling

structures, database management, etc. Traditionally, the concepts, theory and techniques

associated with the functional core design domain are taught as a part of Software

Engineering and other courses in most computer science departments. The goal of SE is

www.manaraa.com

 2

to create efficient and reliable software systems containing the specified functionality, as

well as integrating and implementing the interactive portion of the system. We define the

SE role as that of the developer (sometimes called the software developer) who has the

responsibility for this goal.

To achieve the UE and SE goals for an interactive system, i.e., to create an efficient and

reliable system with required functionality and high usability, effective development

processes are required for both the UE and SE life cycles. The UE development life cycle

(Figure 1) is an iteration of activities for requirement analysis (e.g., needs, task, work

flow, user class analysis), interaction design (e.g., usage scenarios, screen designs),

prototype development, and evaluation thereby producing a user interface interaction

design specification. (Often, the specification is the design, in the form of an iterated and

refined prototype.)

Figure 1: Usability engineering life cycle

The SE development life cycle (Figure 2) consists primarily of concept definition and

requirements engineering, design (preliminary and detailed design), design review,

implementation, and integration & testing (I&T).

www.manaraa.com

 3

Figure 2: Software engineering life cycle

1.2 Problem Statement
Given that the UI and the functional core are two closely coupled components of an

interactive software system, with each constraining the design of the other:

1. there is a need for the SE and UE life cycles to be connected to

support communication among roles between the two life cycles,

and with respect to the pedagogy,

2. there is a need for appropriate computer science curricula to train

the SE and UE roles about the connections between the two

processes.

In particular:

1. There is a lack of project-development environments for interactive software that

connect the SE and UE life cycles, thereby missing out on critical communication

about the various relationships between the two processes from occurring during

development within a project environment. This lack of communication in turn results

in the deficiencies of:

www.manaraa.com

 4

a. coordination of independent development activities where usability and software

engineers could benefit by working together on role-specific activities;

b. mechanisms to identify, understand, and enforce constraints and dependencies

within and between the two life cycles;

c. synchronization of dependent development work activities and resulting work

products to maintain consistency; and

d. mechanisms to anticipate and react to change and insights within and between

the two life cycles.

2. There is a lack of appropriate computer science (CS) curricula to train the SE and UE

roles about the dynamics of interactive-software development. This in turn results in

the lack of:

e. understanding of expertise and role distinction required for interactive-software

development;

f. negotiation and feasibility analysis skills required in the context of interactive-

software development; and

g. an awareness of differing timelines and work products necessary in the overall

development process.

1.3 Background
In the following sections we provide a discussion on similarities, differences, current

practices in interactive-software development, and perspectives of quality to provide

context for this dissertation work.

1.3.1 Similarities between life cycles
At a high level, UE and SE share the same objectives:

• describing a life cycle of development processes, activities, and work products;

• seeking to understand the customer’s and users’ wants and needs;

• translating these needs into system requirements;

• designing a system to satisfy these requirements; and

www.manaraa.com

 5

• testing to help ensure their realization in the final product.

At the process level, both life cycles have similar stages such as requirements analysis,

design, and specifications even though these stages entail different philosophies and

practices as discussed in the next section.

1.3.2 Differences between life cycles
The objectives of the SE and UE are achieved by the two developer roles using different

development processes and techniques. At a high level, the two life cycles differ in the

requirements and design phases but typically converge into one at the implementation

stage (Figure 3).

Figure 3: Current practices – SE and UE processes without connections

This convergence represents a point where these two processes are no longer completely

parallel. There is a certain asymmetry between the two life cycles at this point because

the SE role is ultimately responsible for the implementation of the UE design (Figure 4).

www.manaraa.com

 6

Figure 4: Asymmetry between the SE and UE life cycles

At each stage, the two life cycles have many differences in their activities, techniques,

timelines, iterativeness, scope, roles, procedures, and focus. Several of the salient

differences are identified next.

1.3.3 Different levels of iteration and evaluation
Developers of interaction designs often iterate early and frequently with design scenarios,

screen sketches, paper prototypes, and low-fidelity, roughly-coded software prototypes

before much, if any, software is committed to the user interface. Often this frequent and

early iteration is done on a small scale and scope, and primarily as a means to evaluate a

part of an interaction design in the context of a small number of user tasks. Usability

engineers evaluate interaction designs in a number of ways, including early design

walkthroughs, focus groups, usability inspections, and lab-based usability testing. The

primary goal is to find usability problems or flaws in the interaction design, so the design

can be iteratively improved.

www.manaraa.com

 7

Software engineers identify the problem, decompose and represent the problem in the

form of requirements (requirements analysis block in Figure 2), transform the

requirements into design specifications (preliminary and detailed design blocks in Figure

2), and then implement those design specifications. In the early days of software

engineering, these activities were often performed using the sequential waterfall model

(Royce, 1970). Later, these basic activities were incorporated into more iterative

processes such as the spiral model (Boehm, 1988) (which has a risk analysis and an

evaluation activity at the end of each stage). Even though the more recent SE

development life cycles are evolving towards the UE style by anticipating and

accommodating changes at each iteration, they still stress iteration on a larger scale

(courser granularity) and scope. Moreover, testing and validation, which ensures

integration accuracy and conformance to system specifications, are performed more

towards the end of the development process and can include software for both the

functional core and the user interface.

1.3.4 Differences in terminology
Even though certain terms in both life cycles sound similar they often mean different

things. For example:

• In SE, the output of the design phase is a detailed specification document, usually

in English, describing the structure and elements of the software system being built.

These design specifications are then translated into code in the implementation

stage. In UE the design phase often results in a design “specification” in the form

of a prototype (not usually called “specification” in the UE domain) with the

appropriate look-and-feel and a simulation of the behavior. This prototype is then

handed over to the software developers for implementation in accordance with a

“style guide” (also developed by the UE role) that describes the standards of the

user interface elements for that organization. The term “specification,” when used

in UE domain, is generally used in the context of usability specifications. These

specifications describe the target usability goals and the benchmarks for the system

and have little to do with the implementation of the code.

www.manaraa.com

 8

• In UE, “testing” is a part of design, and is diagnostic in nature, being used to find

and fix problems in the interaction design (identified as formative evaluation in

Figure 1). Summative testing in UE is usually confined to research, but can be used

to establish claims for product marketing. In SE “testing” is an independent stage

where the objective is to check the implementation of the system and to validate its

conformance to specifications. Analysis and verification of the design

specifications performed in SE is often called “review” (identified in Figure 2) or

verification and validation (V & V) (Boehm, 1984; Wallace and Fujii, 1989;

Krauskopf and Rash, 1990; Lewis, 1992; Rakitin, 2001). When the specifications

pass the review or V & V, they become a binding document between the client and

the development team.

• Scenarios in SE (called “use-cases” in the object oriented design paradigm) are

used to “identify a thread of usage for the system to be constructed (and) provide a

description of how the system will be used” (Pressman, 2001). Whereas in UE, a

design usage scenario is “a narrative or story that describes the activities of one or

more persons, including information about goals, expectations, actions, and

reactions (of persons)” (Rosson and Carroll, 2002).

• The SE group usually refers to the term “develop” to mean creating software code,

whereas the usability engineers use “develop” to mean iterate, refine, and improve

usability to create an interaction design.

Overall, the software engineers concentrate on the system whereas the usability engineers

concentrate on the users. This fundamental difference in focus is one of the reasons why

it is difficult to connect these two life cycles.

1.3.5 Differences in requirements representation
Most requirement specifications documented by software engineers use plain English

language and are generally very detailed. These specifications are written specifically to

drive the SE development process. On the other hand, usability engineers specify

interactive component issues such as feedback, screen layout, colors, etc. using artifacts

like prototypes, design scenarios, and screen sketches. These artifacts are not detailed

enough to derive software design, instead they require additional refinement and

www.manaraa.com

 9

reformulation before implementation. Therefore, they cannot be used to directly drive the

software development process. Later on, these UE artifacts, after rigorous formative

evaluation, become requirements for the UI software component.

1.3.6 Change management
On one end of the spectrum of software life cycles in practice today are the

documentation intensive, static, and “ironbound” contractual efforts. The ponderous

weight of voluminous static documentation inherent in these types of projects do not

allow effective mechanisms to predict or accommodate the effects of change, especially

changes that occur very rapidly in early stages of a life cycle. It can be argued that

configuration management processes (Joeris, 1997) and traceability techniques that exist

in SE are an exception to this. Configuration management tools provide mechanisms and

procedures to track changes in the work artifacts generated in a software development life

cycle. Traceability mechanisms, often applied to requirements engineering stages in

software engineering, allow developer roles to analyze and follow change propagation in

a requirement specification document of a software system. However, these tools and

techniques were mostly developed for SE life cycles; and do not address the affects of

change between the two life cycles. In addition, these tools and techniques do not tackle

change prediction and early warnings.

At the other end of the spectrum, many project managers use intensively hands-on project

management principles wherein a project leader walks around managing and

communicating with the various developers in a direct “hands-on” manner taking

individual responsibility to make sure all the details and changes are addressed. This

approach is based on the potential effectiveness of an informal and low-documentation

approach to software development and the fact that a skilled human manager can keep

track of changes and what needs to be done better than an automated system. However,

this approach does not scale-up well as projects get more complex and if the manager has

to keep track of all details of changes in both life cycles of a very large project as it

progresses.

www.manaraa.com

 10

1.3.7 Quality in the development of interactive systems
Interactive-software development is a complex undertaking requiring a variety of

analysis, design, development, and evaluation techniques and involving a diverse group

of stakeholders. Most of these techniques are, in turn, practiced as part of smaller sub-

processes; for example, interactive-software development requires two main life cycle

processes of SE and UE, each of which in turn encompasses sub-processes such as

requirements engineering life cycles and verification and validation in SE, and systems

analysis and usability evaluation in UE. Each of these component sub-processes requires

different developer roles with different skill-sets to build a single interactive software

system within the constraints of a project. Apart from the different developer roles, there

are other important stakeholders in the project such as end users, clients, and support and

maintenance personnel.

With so many entities and stakeholders interacting within the overall project space to

ultimately create and use a single system, each with its own perspectives on quality, it is

difficult to define quality as pertaining to the total interactive software system without

running the risk of being vague or incomplete. The obvious reason for this difficulty is

due to the fact that quality manifests in different ways to different people and therefore

the key to analyzing quality of a software system is usually dependent on the perspective

of the party involved. For the end users, a system of high quality is most probably one

with high measures of usability. For a software developer, a system of high quality could

potentially be one which conforms to all stated requirements while at the same time has

low complexity. For users, it might be about getting those requirements right in the first

place. Similarly, for a maintenance role quality could manifest in terms of reusability.

1.3.7.1 Perspectives on software quality
A survey of the literature finds many definitions of software quality that cater to the

perspectives of select stakeholders. For example, according to Pressman, quality is

“conformance to explicitly stated functional and performance requirements, explicitly

documented development standards, and implicit characteristics that are expected of all

professionally developed software” (2001). He acknowledges that this definition can be

modified, extended, and debated “endlessly” and proceeds to emphasize three points

www.manaraa.com

 11

pertaining to quality: conformance to explicit software requirements as the foundation of

quality, adherence to standards that define the development criteria for engineering

software, and conformance to implicit requirements such as “the desire for ease of use

and good maintainability”. It is not surprising that this definition emphasizes software

requirements and treats usability (if we consider the reference to “ease of use” as a

reference to the much broader concept of usability) as an implicit requirement, given the

fact that Pressman is a software engineer and therefore has a software engineer’s

perspective.

1.3.7.2 Quality in the context of interactive-systems development
Providing a definition of software quality that encompasses all aspects of a software

project space is beyond the scope of this work. In this work we take an approach to

defining software quality that is more appropriate and encompassing of the various

entities involved in an interactive-systems development effort. At a general level, we

believe, the issue of quality in a given development effort can be described using two

high-level perspectives: quality as pertaining to the development process and quality as

pertaining to the developed products resulting with the application of the process.

Applying this definition to the development space of interactive systems, with component

SE and UE life cycles, theoretically speaking we have four major perspectives for quality

as shown in Figure 5: SE process, SE product, UE process, and UE product quality.

Using this approach to quality, the definition provided by Pressman, as described in the

previous paragraph, falls mostly on the SE product part on the top right of Figure 5

(“conformance to explicitly stated functional and performance requirements [and having]

implicit characteristics that are expected of all professionally developed software”) with

the reference to “explicitly documented development standards” falling on the SE process

part on the top left. In practical terms, given that there is only one product, in the form of

an interactive software system that is finally deployed to the customer, the SE and UE

products are one and the same. Also, the quality of SE and UE products are tightly

coupled, and impact one another to a large extent (Bass and John, 2003).

www.manaraa.com

 12

S
E

Process

U
E

Product

SE process
quality

UE process
quality

SE product
quality

UE product
quality

Figure 5: Quality types in the context of interactive-software development

1.3.7.3 The process dimension of quality
On the process dimension of software quality (left column in Figure 5), there exist

significant amount of literature on the SE part (top left in Figure 5). For example, at an

organizational level the quality of a process can be measured indirectly using the maturity

level achieved by that process. One such SE process maturity model is the Capability

Maturity Model (CMM) (Paulk, et al., 1993) which specifies levels such as “initial”

where the process is loosely (if at all) defined and success is dependent on individual

knowledge, skill, experience, and initiative, “repeatable” where the basic scheduling and

cost analysis practices are in place and these practices are repeatable, “defined” where the

practices are standardized, documented and integrated into an organization-wide practice,

“managed” where process quality metrics (as defined by CMM) are collected and used

quantitatively to control the process and products of a development effort, and

“optimizing” where a development effort is constantly calibrated and improved by

experimentation and introduction of new technologies (Pressman, 2001). The UE life

cycle, being much younger, does not have as well defined process-based quality attributes

as its SE counterpart. It is only recently that some work is being done in adopting the

CMM-style process maturity models for UE life cycles (Allgood, 2004).

In this work, instead of taking the CMM-style standards approach, we define SE and UE

process quality, in utility terms, as a measure of how well the various activities, phases,

and timelines described in a life cycle process work for a particular development effort.

We opine that a good process provides the right amount of flexibility and guidance to

developer roles in accomplishing the goals and objectives of the project within a given set

of constraints by expending the lowest possible effort, accommodating changes, and

www.manaraa.com

 13

affording mechanisms to contain and minimize surprises that often have costly side-

effects.

Extending this utility-based definition of software process quality to interactive-software

development, we characterize the quality of the overall software process as the measure

of how well it supports the joint execution of SE and UE life cycles by providing

mechanisms for communication (in the forms of coordination, constraint and dependency

checking, synchronization, and change management). In other words, we take the

perspective that the more a particular process affords these factors, the better the quality

of that process.

1.3.7.4 The product dimension of quality
The other important aspect of a development effort is the product that is created as a

result of the application of a process. The term product does not necessarily mean the

finished software system alone but also refers to work products that are created during

the different phases of the process (e.g. Software Requirements Specifications, user

interface prototypes, benchmark task descriptions). The ultimate goal of a development

process is to create a quality product, and the quality of a product is often dependent on

the quality of the process used to create that product.

Some of the most commonly discussed software quality attributes such as conformity (to

requirements), reliability, maintainability, complexity, reusability, and usability are

product-oriented. Out of these, except for usability, all attributes fall in the SE product

category on the top right portion of Figure 5. Similarly, even though not widely

discussed, the broad concept of usability has a variety of product-based attributes (bottom

right part of Figure 5) such as ease-of-use, user satisfaction, learnability, retention over

time, and efficiency of task performance.

1.3.7.5 Measuring quality
It is difficult, if not impossible, to directly measure the quality of a process or a product.

Because of this, quality is usually measured using indicators pertaining to the attributes of

a process or a product. For example, the quality of a product can be estimated using

measures such as usability and complexity. Similarly, the quality of a process can be

www.manaraa.com

 14

estimated by measuring the cost per project module completed or the level of maturity on

a CMM scale. Details of the evaluation setup, metrics, and procedure for the study in this

research are provided in Chapter 6.

1.4 Current Practices and Motivation
In spite of the extensive research and maturity levels achieved individually in areas of UE

and SE life cycles, there has been a marked deficiency of understanding about

connections between the two. Underlying this lack of understanding is fact that the

corresponding developer roles, in general, do not identify with the other’s goals and

needs and do not have an appreciation for the other’s area of expertise. One apparent

reason for this deficient understanding and appreciation is the way computer science

courses are typically offered in colleges and universities: SE courses often omit any

references to usability and user interaction development techniques, and UE courses often

do not discuss the SE implications of usability patterns (Douglas, et al., 2002), (Pyla, et

al., 2004b).

Compared to software engineering life cycle concepts, which have been in existence for

much longer periods of time, usability engineering life cycle concepts are significantly

younger and less extensively adopted in most software development companies. A result

of less maturity of usability engineering combined with the lack of understanding and

appreciation of its importance often results in the usability engineering life cycle not

being practiced in its entirety or, worse, ignored completely. Usability engineers are often

brought in after the software components are completed and asked to fix the usability of

the system. At this stage in the development life cycle any usability fix or

recommendation that requires architectural or major backend modification is too

expensive to make and is often left out. Only minor or cosmetic changes are addressed,

with the potential of having serious usability problems in the developed system.

Given that both SE and UE development life cycles are now reasonably mature and well

established, both have the same high-level goal of producing software that the user wants

and needs, and both recognize that the two must function together to create a single

system, one might expect well-defined connections for collaboration and communication

www.manaraa.com

 15

between the two development processes and for the resulting overall software system,

backend plus the UI, to have high quality. However, for the most part, the two disciplines

are still considered as separate and are applied independently with little coordination

during product development. The result is a system falling short in both quality of the

product (functionality and usability) and in some cases the process (completely failed

project) itself (The Standish Group, 1994; The Standish Group, 1995; The Standish

Group, 1999; The Standish Group, 2001).

With the ever-increasing use of software systems today and the growing amount of

resources being expended in software development, there is a need to investigate why the

overall quality of systems (product) with interactive components is not as good as it could

be, identify potential factors that affect the overall quality of software development

(process), and investigate if and how these factors affect the overall quality.

Based on our review of the literature, informal interviews with software developers in the

real-world, and brainstorming with researchers and experts, it appears that in order to

collaborate successfully on a single cohesive final product, the SE and UE life cycles

should be connected and that each of the UE and SE roles must work with the other role.

More specifically, we have identified the following factors that appear to be prime

candidates for impacting quality in an interactive-software development effort. In the

next few sections we provide rationale as to why we selected these factors and how they

may impact quality.

1.4.1 Communication among different life cycle roles
Although the two life cycle roles can successfully do much of their development

independently and in parallel, because of the tight coupling between the backend and the

UI, a successful project requires that the two roles communicate so that each knows

generally what the other is doing and how that might affect its own activities and work

products. The two roles cannot collaborate without communication and the longer they

work without knowing about the other’s progress and insights, the greater their work

diverges, and the harder it becomes to bring the two life cycle products together at the

end.

www.manaraa.com

 16

Communication is important between the SE and UE roles to have activity awareness

about how the other group’s design is progressing, what development activity they are

currently performing, what features are being focused on, what insights and concerns

they have for the project, what directions they are taking, and so on. Especially during the

early requirements and design activities, each group needs to be “light on its feet” and

able to inform and respond to events and activities occurring in the counterpart life cycle.

However, current practices (Figure 3) do not permit that necessary communication to

take place because the two life cycles operate independently; that is, there is no structured

development framework to facilitate communication between these two life cycles,

leaving cross-domain (especially) communication dependent on individual whim or

chance. Based on our real-world experience, day-to-day communication processes have

proven to be inadequate and often result in nasty surprises that are revealed only at the

end when serious communication finally does occur. This is known to be often too late in

the overall process.

One might argue that the communication process need not be more formal than it is right

now and that the usability and software engineering practitioners should be on the same

analysis team. Indeed, in their day-to-day life, the two developers are often technically on

the same analysis team. But our real-world experience has shown that this is not enough

to foster the necessary communication (especially about features and changes) because

each role still focuses almost completely on their own problems and their own designs.

For example, the SE role in general is not concerned about UE role’s interaction design

and vice versa. So our communication focus is not on formality, but on completeness.

In this work we have identified the following forms of communication to be candidates

that have the potential to affect the quality of an interactive-software development

endeavor.

1.4.1.1 Coordination of development activities
When the two life-cycle concepts are applied in isolation, the resulting lack of

understanding between the two developer roles, combined with an urgency to get their

www.manaraa.com

 17

own work done, often leads to working without collaboration (Figure 3), when they

could be more efficient and effective coordinating with one another.

The lack of coordination between the usability and software engineers often results in not

getting the usability needs of the system represented in the software design. This usually

leads to conflicts, gaps, design and requirements mismatches, miscommunication,

“spaghetti” code, and brittle software due to unanticipated changes and other serious

problems during development.

Without coordination, the two roles duplicate their efforts in usability and software

engineering activities when they could be working together. For example, both the SE

and UE roles conduct field visits and client interviews for systems analysis and

requirements gathering during the early stages of system development. Software

engineers elicit functional requirements (Pressman, 2001), and determine the physical

properties and operational environments of the system (Lewis, 1992), etc. Usability

engineers visit clients and users to determine, often through “ethnographic studies”

(Blomberg, 1995), how users work and what computer-based support they need for that

work. They seek task information, inputs for usage scenarios, and user class definitions.

Often, the activities of the two roles are performed independently, missing opportunities

for team building, communication, presenting a unified developer “face” to clients, and

early agreement on goals and requirements. Why not coordinate this early systems

analysis effort? There is potential for much value to be derived from cooperative system

analysis and requirements gathering. Such joint activities help in team building,

communication, and in each life cycle role recognizing the value, and problems, of the

other, in addition to early agreement on goals and requirements. In addition, working

together on early life cycle activities is a chance for each role to learn about the value,

objectives, and problems of the other. Instead, each development group reports its results

in documentation not usually seen by people in the other life cycle. Each uses those

results to drive only their part of the system design and finally merge at the

implementation stage (Figure 3), where it is much too late to discover the differences,

inconsistencies, and incompatibilities between the two parts of the overall design.

Moreover, this lack of coordinated activities presents a disjointed appearance of the

www.manaraa.com

 18

development team to the client. It is likely to cause confusion in the clients: “why are we

being asked similar questions by two different groups from the same development team?”

Another significant shortcoming of the practice shown in Figure 3 is the fact that the

independently generated user interface specifications on the UE side and functional

design specifications on the SE side are submitted to the development team at

implementation stage. However, because these specifications were developed without

coordination and communication, when they are now considered together in detail,

developers typically discover that the two design parts do not fit with one another

because of large differences and incompatibilities.

1.4.1.2 Constraint mapping and dependency checks
Because each part of an interactive system must operate with the other, many system

requirements have both SE and UE components. If SE component or feature is first to be

considered, it should trigger (or be mapped to) a reminder that a UE counterpart is

needed, and vice versa. When the two roles gather requirements separately and without

communication, it is easy to capture requirements that are conflicting, incompatible or

one-sided. Even if there is some ad-hoc form of communication between the two groups,

it is inevitable that some parts of the requirements or design will be forgotten or will “fall

through the cracks”.

The lack of understanding of the constraints and dependencies between the two life

cycles’ timelines and work products often create serious problems such as inconsistencies

in the documentation (work products) of the SE and UE design. As an example, software

engineers perform a detailed functional analysis from the requirements of the system to

be built. Usability engineers perform a hierarchical task analysis, with usage scenarios to

guide design for each task, based on their requirements. Documentation of these

requirements and designs is maintained separately and not necessarily shared. However,

each view of the requirements and design has elements that reflect counterpart elements

in the other view. For example, each task in the task analysis on the UE side implies the

need for corresponding functions in the SE specifications. Similarly, each function in the

software design can reflect the need for access to this functionality through one or more

www.manaraa.com

 19

user tasks in the user interface. Without the knowledge of such dependencies, when tasks

are missing in the user interface or functions are missing in the software because of

changes on either life cycle, the respective sets of documentation have a high probability

of becoming inconsistent.

Constraints, dependencies, and relationships exist not only among activities and work

products that cross over between the two life cycles but also within each of the life

cycles. For example, on the UE side, a key task identified in task analysis should be

considered and matched later for a design scenario and a benchmark task. To our

knowledge, there are no existing life cycle frameworks that help in addressing such

internal and external constraints, dependencies, and relationships among life cycle

activities.

In general, design choices made in one life cycle constrain the design options in the other.

In our consulting experience we often encountered situations where the user interfaces to

software systems were designed from a functional point of view and the code was

factored to minimize duplication on the backend core. The resulting systems had user

interfaces that did not have proper interaction cues to help the user in a smooth task

transition. Instead, a task oriented approach would have supported users with screen

transitions specific to each task; even though this would have resulted in a possibly “less

efficient” composition for the backend. Another case in our consulting experience was

about integrating a group of individually designed web-based systems through a single

portal. Each of these systems was designed for separate tasks and functionalities. These

systems were integrated on the basis of functionality and not on the way the tasks would

flow in the new system. The users of this new system had to go through awkward screen

transitions when their tasks referenced functions from the different existing systems.

Because of the constraints on one another, independent application of the two life cycles

(Figure 3) is likely to fail.

1.4.1.3 Synchronization of development schedules
In current practices, the life cycle roles must synchronize the work products eventually

for the implementation and testing phases. However, waiting until one absolutely must

www.manaraa.com

 20

synchronize obviously creates problems. Therefore, it is better to have many

synchronization points, earlier and throughout the development life cycle. These timely

synchronization points would allow earlier, more frequent, and less costly “calibration”

to keep both design parts on track for a more harmonious final synchronization with

fewer harmful surprises.

The lack of synchronization of the design work products of the two life cycle roles, which

is usually put off until the implementation and testing phases, near the end of the

development effort creates big surprises that are often too costly to address. For example,

as mentioned in the current practices section, it is not uncommon to find usability

engineers being brought into the project late in the development process, even after the

SE implementation stage. They are asked to test and/or “fix” the usability of an already-

implemented system, and then, of course, many changes proposed by the usability

engineers that require significant modifications must be ignored due to budget and time

constraints. Those few changes that actually do get included require a significant

investment in terms of time and effort because they must be retrofitted (Boehm, 1981).

Also, often during the development life cycle, there is a need for synchronizing the

timing of activities in such a way that there is timely readiness of work products when the

other development role needs them. This prevents situations where one development role

must wait for the other one to complete a particular work product. However, as shown in

Figure 3, the more each team works without communication and collaboration, the less

likely they will be able to schedule their development activities to arrive simultaneously

at common checkpoints.

1.4.1.4 Provision for anticipation and reaction to changes and
insights

In the development of interactive systems, each phase and each iteration has a potential

for change. In fact, at least the early part of the UE process is intended to change the

design iteratively. This change can manifest itself during the requirements phase

(growing and evolving understanding of the emerging system by developers and users),

design stage (evaluation identifies that the interaction metaphor was not easily

understood by users), etc. Such changes often affect both life cycles because of the

www.manaraa.com

 21

various dependencies that exist between and within the two processes. Therefore, change

can conceptually be visualized as a design perturbation that has a ripple effect on all

stages in which previous work has been done. For example, during the usability

evaluation, the usability engineer may recognize the need for a new task to be supported

by the system. This new task requires updating the previously generated hierarchical task

analysis document and generation of new usage scenarios to reflect the new addition

(along with the rationale). This change to the HTA generates the need to change, on the

SE side, the functional decomposition (by adding new functions to the functional core to

support this task on the user interface). These new functions, in turn, mandate a change to

the design, schedules, and in some cases even the architecture of the entire system. Thus,

one of the most important requirements for system development is to identify the possible

implications and effects of each kind of change and to account for them in the design

accordingly. Another important requirement is to try to mitigate the impact of change by

communicating about changes as early as possible, and by directing that communication

directly to the development activities most affected. The more the two developer roles

work without a common structure (Figure 3) the greater the possibility that inevitable

changes in each part will introduce incompatibilities, revealed as “surprises” when they

finally do communicate.

One particular kind of dependency between life cycle parts represents a kind of “feed-

forward”, giving insight to future life cycle activities. For example, during the early

design stages in the UE life cycle, the usage scenarios provide insights as to how the

layout and design of the user interface might look like. In other words, for development

phases that are connected to one another (in this case, the initial screen design is

dependent on or connected to the usage scenarios), there is a possibility that the designers

can forecast or derive insights from a particular design activity. Sometimes the feed-

forward is in the form of a note: “when you get to screen design, don’t forget to consider

such-and-such.” Therefore, as and when the developer encounters such premonitions or

ideas about potential effects on later stages (on the screen design in this example), there is

a need to document them when the process is still in the initial stages (usage scenario

phase). When the developer reaches the initial screen design stage, the previously

documented insights are then readily available to aid the screen design activity. To our

www.manaraa.com

 22

knowledge, none of the current approaches to the development of systems with

interactive components provide this capability.

1.4.2 Training SE and UE roles within computer science
curricula

One of the most important reasons why SE as a field has failed to connect to the UE

discipline is that the processes and activities in SE have their roots in non-interactive,

batch processing based, systems-side applications development. On the other hand, one

plausible explanation for why the UE discipline failed to connect to the SE domain is a

lack of knowledge on the part of the usability engineers toward SE processes, constraints

and schedules. Overall, the developers from these two disciplines have very little

understanding and appreciation for each other’s skills, techniques and backgrounds. One

fundamental reason for this state-of-the-art is the lack of education curriculum in CS that

address the various issues involved in the development of interactive software.

Traditionally, the concepts, theory and techniques associated with the user interface (UI)

design domain are taught as a part of Human Computer Interaction (HCI) courses in most

computer science departments. These courses use text books such as (Newman and

Lamming, 1995; Shneiderman, 1998; Rosson and Carroll, 2002) and cover topics that are

completely focused on the user interface side of system development. Little or no

mention is made of the required SE role to implement the UI specifications. The SE

courses as they are offered in most computer science departments are no better than their

HCI counterparts when it comes to addressing the connections between the two domains.

SE courses often omit any references to UE role required to design the UI.

In this work we have identified the following pedagogical topics to be candidates for

training SE and UE roles in the context of interactive-software development.

1.4.2.1 Expertise and role distinction
Most existing CS curricula do not make clear the distinct roles that are involved in the

development of interactive software. For example, on the UE side, students who

complete HCI courses that make no reference to the counterpart SE role gain little, if any,

appreciation for the development process associated with the functional part of the

www.manaraa.com

 23

system. They may wrongfully believe that any usability or user interface specification

derived by them will “somehow” get automatically implemented by “someone”, which in

reality is rarely the case. To the contrary, simple usability features, such as undo, that the

students might take for granted, can have serious architectural implications in the

functional part of the system. Similar problems exist on the SE side as well. We surveyed

a majority of the top selling books in software engineering/software design and

engineering (according to facultyonline.com website) (2007b). Out of these, only a small

fraction of textbooks identify and dedicate sections to existence of a parallel life cycle for

UE.

1.4.2.2 Negotiation and feasibility analysis
Because of the tight coupling between UI features and the functional core (Bass and

John, 2003), it is essential that the two roles frequently communicate to negotiate and

ascertain the compatibility of their individual designs. Most HCI or SE curricula fail to

address this important aspect of interactive-software development. For example, Rosson

and Carroll (2002) talk about scenarios and focus on the UE life cycle and process. They

do not provide a clear description of the two development efforts and the implications for

the functional core. The incremental case study provided in this book proceeds through

different interface design stages (as the chapters progress), and ends up with a system

entirely developed and including user documentation. The readers are not informed how

the user interface specifications are communicated to the software developers, nor how

the design constraints are negotiated between the two development bodies. Same

problems exist on the SE side. The few SE text books that identify and dedicate sections

to UI concerns still do not address the dependencies and implications of the two

processes on one another. Students completing software engineering courses that follow

the syllabus in textbooks like these obviously will gain little or no appreciation for the

user interface issues and the constraints on the functional core that may arise due to them.

1.4.2.3 Timelines and work products
Most HCI courses stress the importance of iterativeness in the UE life cycle and advocate

a light-weight development process. SE courses also promote iterativeness albeit to a

lesser degree. However, what is not discussed in these classes is how these differences in

www.manaraa.com

 24

iterativeness are impacted when the two roles are working together. For example it does

not help the overall process if the UE role is in the middle of an iteration when the SE

role enters their design phase. Another aspect that is rarely covered in traditional SE and

UE courses is the need for each role to share and discuss one another’s work products to

ensure their designs are consistent with one another.

1.4.2.4 Strategies for change management
One of the key constants in interactive-software development is change. Because of the

complexity involved in designing systems that fit the needs of different stakeholders it is

almost impossible to get the design right the first time. Therefore the two roles often

employ prototyping and other techniques to manage change inexpensively.

Implementation of the “real” product (a high-fidelity prototype in the case of the UE life

cycle) is only undertaken after the design has stabilized enough for each role; even then

the respective products are often changed as each life cycle progresses. This problem of

change management is further aggravated in when two life cycles have to work together.

Not only should each role manage change in their life cycle but should also design and

react to change in the counterpart life cycle. Current HCI and SE curricula do not address

these issues.

1.5 Research Goals
At a high-level we had two research goals to address the two parts of the problem

statement (Section 1.2) respectively:

1. Connect the SE and UE life cycles by creating a project development environment that

fosters communication between the SE and UE life cycles, and explore the question of

whether and in what way the following four communication factors affect the quality of

development of interactive software systems:

a. coordination of development activities that have commonalities between the two

life cycles’ processes;

b. constraint and dependency enforcement between the two life cycles’ phases

and work products;

www.manaraa.com

 25

c. synchronization of dependent development activities; and

d. anticipation and reaction to change within the overall development effort.

2. Connect the SE and UE life cycles by creating a graduate-level cross-pollinated SE-

UE joint course offering to explore whether and in what way the following factors

influence the effectiveness in educating SE and UE roles about the intricacies of

interactive-software development:

a. expertise and role distinction in the context of working with SE and UE roles;

b. negotiation and feasibility analysis among SE and UE roles about UI and

functional features and design; and

c. timelines and work products pertaining to the SE and UE life cycles.

1.6 Research Approach
In this dissertation we approached our research goals in two ways, by:

1. Creating the Ripple project development environment to foster communication

between the SE and UE roles. This was accomplished by:

a. creating an abstract formal description of the total “development space” in order

to precisely and completely express the properties and attributes of various

entities involved in an interactive-systems development effort and the constraints

and dependencies within them. This description, called the Ripple Description

Model (RDM), consists of an abstract formal notation to describe the structure,

activities, work products, developer roles, timelines, connections, and interactions

between the two life cycles using concepts from discrete mathematics and set

theory,

b. rendering the RDM more concrete, in the form of the Ripple Implementation

Framework, which describes specifically how the RDM could translate into a

software development environment system, including tool support, entities, and

various components used in the development of interactive systems. This

framework is expressed at a level of detail of the major software components to

support work product repository, the constraint module, and the life cycle

www.manaraa.com

 26

descriptions. This framework would provide the tools to specify and represent

different types of life cycles, development approaches, development techniques,

and project constraints, but does not stipulate what form each of these items must

take. Therefore this framework can be instantiated to apply to a particular project;

we call the result of such an effort a Ripple Implementation Instance. This

implementation instance provides the developers the flexibility to adopt activities,

techniques, and supporting systems to support the needs of a particular

development effort with its own constraint set,

c. creating a Ripple Implementation Instance to represent the development of an

interactive system in a classroom setting, and

d. evaluating how the above mentioned communication factors affect the quality of

the SE and UE processes and products by using the classroom instantiation.

2. Creating a graduate-level cross-pollinated SE-UE joint course-offering to educate SE

and UE roles about the intricacies of interactive-software development. This was

accomplished by:

a. demonstrating a proof of concept of a cross-pollinated graduate-level joint SE-UE

course in the Department of Computer Science at Virginia Tech through which

we trained students from UE class to perform the UE role and students from SE

class to perform the SE role in undertaking semester-long joint team projects,

b. simulating different conditions of interactive-software development (i.e. with

different types of project constraints and role playing explained in Section 6.3.1)

and assigning different teams to these conditions. These teams developed

prototype systems for a real client using their assigned development condition,

and

c. requiring the teams to record experiences and lessons learned as they use the

assigned development condition. Each team shared the knowledge they gained

and lessons learned to teams from other conditions via an end-of-semester

research symposium. Different instruments were used to measure how the above

www.manaraa.com

 27

mentioned pedagogical factors affect the quality of the cross-pollinated SE-UE

curricula.

In other words, the research approach adopted in this dissertation could be summarized

as:

1. Investigate the effects of communication factors on quality by:

a. Creating the Ripple Description Model to formally and abstractly chart the

interactive-systems development space,

b. Rendering the Ripple Description Model concrete by creating a Ripple

Implementation Framework to describe how the Ripple Description Model would

translate into a real software system supporting the development environment,

roles, and entities present in an interactive-systems development effort,

c. Generating a Ripple Implementation Instance of the Ripple Description Model to

suit the requirements and constraints of a development effort in a classroom

setting, and

d. Investigating how communication factors affect the quality of the SE and UE

processes and products by using this classroom instantiation.

2. Investigate the effectiveness of a cross-pollinated SE-UE curriculum by:

A. Creating a cross-pollinated SE-UE course by offering graduate-level SE and UE

classes together and assembling teams from across the two classes to play the UE

and SE roles,

B. Simulating different conditions of interactive-software development in a

classroom setting and assigning different teams to each of these conditions,

requiring them to conceive, design, and develop a software system, given the

same project constraints,

C. Requiring the teams to record experiences and lessons learned as they use the

assigned development condition, and demonstrating these lessons learned to

teams in other conditions via an end-of-semester research symposium.

www.manaraa.com

 28

1.7 Scope and Limitations
In this work, we explored the relationships between quality (of process and product) and

the factors of communication such as coordination, constraint and dependency checking,

synchronization, and anticipation and reaction to change. We conducted an evaluation of

an instance of the Ripple Implementation Framework by creating teams comprising of

usability engineers and software engineers from graduate level UE and SE classes

respectively. These teams were asked to develop a functional prototype of an interactive

software system; some of these teams used a Ripple Implementation Instance and the

others used a development environment that represented real-world practices where the

above factors were controlled.

However, we were not able to distinguish the individual contributions of each factor

because of the classroom setting, the lack of control on each individual factor, and the

fact that this was a one-time opportunity to run the study. Clear differentiation of the

contributions of each individual factor on an individual quality attribute requires

conducting numerous separate studies and varying the measure of each factor while

keeping all other factors constant. Another approach to differentiation is by controlling a

single factor per set of groups in a large study and measuring the effects of that factor on

the quality of process and product. Because of resource limitations and classroom

constraints these two approaches to differentiation could not be adopted, resulting in our

investigating the effects of the set of factors, taken as whole, on the various quality

aspects. However, this study provides a foundation for future studies beyond this

dissertation, where contributions of each individual factor on quality attributes of process

and product can be studied.

1.8 Operating Assumptions and Constraints
Our research objectives for creating the Ripple Description Model and the Ripple

Implementation Framework are guided by the assumptions that they:

• are not designed for or biased toward any particular software engineering life cycle

process such as the waterfall model (Royce, 1970) or spiral model (Boehm, 1988),

but are intended to connect to any SE process;

www.manaraa.com

 29

• are not focused on particular usability engineering life cycle approaches such as the

Star Life Cycle (Hix and Hartson, 1993) or theoretical approaches such as the

scenario-based design (Rosson and Carroll, 2002) but are intended to connect to

any UE process; and

• do not merge the SE and UE development processes into a single process but retain

them as separately identifiable processes, each with their own life cycle structure,

development activities, and techniques.

Our research objective of whether communication factors such as coordination,

synchronization, constraint and dependency mapping, and provision for anticipating and

reacting to change within an overall SE and UE development environment have an effect

on the overall quality of the process and product was also constrained. Namely, the

quality of processes and products manifests in wide range of attributes such as usability,

maintainability, reliability, complexity, and efficiency and it was not possible to measure

all such attributes directly in a classroom-style evaluation. In Chapter 6 we discuss the

evaluation setup, the attributes we measured, and the metrics used.

1.9 Research Contributions
Based on our work in this area, the following is a summary of our research contributions:

1. Demonstrated feasibility of connecting SE and UE processes by demonstrating a

project-development environment that fosters communication to facilitate coordination of

independent development activities, enforcing constraints and dependencies within and

between the two life cycles, synchronization of dependent development work activities

and resulting work products to maintain consistency, and to anticipate and react to change

and insights. Specifically, the following contributions were made in this regard:

a. Charted the interactive-systems development space: Using the Ripple

Description Model, we were able to abstractly express and describe the

interactive-systems development space, which includes the two life cycles, their

constituent activities, work products, and the connections and dependencies

within these different entities. This abstract representation later drove the

www.manaraa.com

 30

development of a framework that concretely defined the development

environment and tool support necessary for interactive-systems development.

b. Created a framework that describes software development environment for

interactive systems: By identifying major components such as work product

repositories and mechanisms such as constraint enforcement that are necessary to

connect SE and UE life cycles, we created a framework that fosters

communication and improves quality of resulting work products. This framework

has the flexibility to be used for any SE and UE life cycles and within any given

set of project constraints.

c. Identified effects of key communication factors on process and product

quality: By instantiating the Ripple Implementation Framework in a classroom

setting and evaluating it in an exploratory study, we were able to identify the

effects of communication in the form of coordination, constraint and dependency

checking, synchronization, and change management on the quality of the

development process and resulting products.

d. Laid foundation for a software environment to support SE and UE

connections: With the Ripple Description Model, the Ripple Implementation

Framework, and the Ripple Implementation Instance, we were able to understand

the development space of an interactive-software development effort. With the

insights gained during our evaluation, we now have a reasonable understanding of

the various components a project management environment should have for

supporting the development of interactive software systems. With this

understanding it is now possible to specify a software tool/environment that can

support these entities.

e. Performed detailed analysis of inter-role communication within an

interactive-software development environment: Using our exploratory study,

we were able to conduct a detailed analysis of how different roles, personal and

professional biases, group contexts, and project constraints impact the product and

process in a software development environment. Based on these analyses we

www.manaraa.com

 31

derived implications for organizational and management level issues in the real-

world.

2. Demonstrated a proof of concept for cross-pollinated SE-UE curriculum through

a one-of-its-kind joint offering of SE and UE courses. Using this experimental course

offering, we were able to provide a more effective learning environment for students

enrolled in these classes. Specifically, the following contributions were made in this

regard:

a. Introduced students to the different roles and expertise necessary for

interactive-software development: By training students in SE class for SE role

and UE class for UE role and requiring students to work on semester-long team

projects for a real client we facilitated learning of different roles by the students

actually performing in those roles.

b. Demonstrated the dynamics and tradeoffs involved in different conditions of

interaction between the SE and UE life cycles: By simulating different

interactive-software development conditions and requiring students to record and

synthesize their experiences, and then by making them share these experiences,

we were able to educate the students about the advantages and disadvantages in

following different paradigms of interactive-software development.

c. Identified curriculum recommendations for teaching cross-pollinated SE-UE

courses: Based on our experience in offering graduate-level joint SE-UE classes

we identified different pedagogical recommendations for CS educators who

attempt to teach similar courses.

www.manaraa.com

2 Chapter Two: History and Related Work

2.1 A True Story
It was an important day for one academic department on Virginia Tech campus because of the

visit by a highly distinguished design scholar, the lead of one major academic and professional

society, in the area of Human Factors and Ergonomics. The visitor was scheduled to give a talk

at 2:00PM. The lecture hall was full with eager graduate students, researchers, and faculty

members from HCI, human factors, and other design related areas waiting to hear the guest talk.

One of the graduate students, probably the organizer of the event, confidently walks up to help

the speaker “setup” her presentation on the computer. What happened in the next half hour was

an interesting and insightful look into the current state-of-the-art of computing technology that

surrounds us in everyday life.

Needless to say, the “setting up” of the presentation, which was stored on the speaker’s USB

flash drive turned out to be a much harder task than anticipated and very soon involved the

expertise of about half a dozen others in the room. The presentation file could not be loaded from

the USB drive after it was plugged into the computer. In the course of next several minutes,

while trying to troubleshoot the problem, revelations were made: “Oh! This is Mac,” frustrations

were expressed: “Don’t know what it is doing,” aspersions were cast “I don’t think Macs

understand that,” hypotheses were conjured: “I think you hit this button,” and finally arbitrary

solutions were proposed: “You should not try to load the file from the USB device. You need to

copy the file to the local drive and then load it.” Nobody knew why that is so, just as they did not

know “how to get rid of that clock on the bottom of the screen” that was interfering with the

presentation, but the idea worked. The clock was dragged as far into a corner as possible (a small

part if it was still sticking out) and the slideshow was started.

The talk started 20 minutes late and the organizer apologized for the delay citing “technological

problems.” The speaker proceeded to give a highly informative and interesting presentation of

her work on designing smart homes. The talk was periodically punctuated with annoying

intrusions by the slideshow software whenever the speaker encountered high resolution images

in her presentation.

www.manaraa.com

 33

Sitting in the audience we could not help but wonder at the fact that it took half a dozen bright

design scholars, each an expert user of computers, half an hour to wrestle with technology to get

a simple presentation running from a supposedly “universal” storage device. A deeper analysis of

the occurrences in this story divides into two philosophical positions:

One, taking a systems perspective, today software systems make it possible (with effort) to

combine a rich variety of information media into a presentation, use powerful visual effects to

manipulate and disseminate that information in a presentation, carry that presentation around in a

keychain sized device, “plug and play” with that device on almost any machine, and be able to

use that information in a slideshow on even a different platform from the one it was prepared on.

Two, taking a users perspective, today software users are subjected to annoyances and

frustrations on a daily basis when encountering computing technology. Instead of helping people

solve problems it is becoming increasingly evident that computers are the problem (Landauer,

1995; Pew, 2003). If one were to reflect on the reasons for this state-of-the-art, one would realize

that there are two aspects that seem to impact a user’s encounters with technology: the

capabilities of the system, and the mechanisms to access those capabilities.

We argue that, the quality of the functionality combined with the interaction experience provided

by a computing system gives a measure of the philosophical distance between the two positions

stated above. Today we have mature technologies and frameworks that independently afford

greater functionality or better interaction experience but usually fail to provide both. This

situation is a result of three main problems that often arise due to:

• Software engineering concerns: Software functionality not being quite right beyond the

small scope it was developed for (e.g. the USB device drivers not working, as required, on

the Macintosh platform);

• Usability engineering concerns: User interface controls not being intuitive and efficient

(e.g. the inability to get rid of the clock from the screen); and most importantly

• SE and UE dependency concerns: Software functionality and interaction experience not

developed in relation with one another (e.g. the system supports USB functionality and

with the right affordances on the UI, lets the users to believe they can interact with the

external drive like any other drive. The users can store presentation files and copy them to

www.manaraa.com

 34

the local disk, but cannot directly load the file from the external drive even though that

matches the user’s mental model better).

Why is the state-of-the-art like this? How did we arrive at this situation? What led to the two

factors of functionality and interaction experience (and the principles to design for them) to

mature independently? Were there any attempts to bridge this disconnect? If so, how and by

who?

In this chapter we provide a historical background on computing with an emphasis on the two

disciplines responsible for guaranteeing functionality and interaction experience, along with an

interpretation in the context of the current state-of-the-art. We then provide a survey of related

work in the literature for bridging the gaps between the user interface methodologies and their

functional counterparts.

2.2 Historical Background
In order to understand and appreciate the progress (or reflect on the lack thereof) of computing as

a means to empower humans, we argue that we need to know the roots, history, and factors that

shaped the endeavors of computer scientists ultimately leading to the state-of-the-art. In this

section, we use “computing” to mean an abstract discipline which includes hardware, software,

personware, and the science and engineering principles related to them.

We have organized this history as a chronological sequence of eras. We acknowledge that

history lends itself to be divided according to many criteria and that our work here is by no

means exhaustive and complete enough to include all such criteria. We focus on those aspects

that help put the gaps between SE and HCI in perspective. This organization is based on and

adapted from the one provided by Pew (2003).

2.2.1 The pioneering years – 1966 and before
Target users of the era: The predominant users of this age were programmers. These were

individuals who had to deal with punched cards on special machines to convert their logic into

machine input.

Players and visionaries: Vannevar Bush (“As we may think” article (Bush, 1945)); J. C. R.

Licklider (“Man-Computer Symbiosis” article (Licklider, 1965)); Douglas Englebart (invented

www.manaraa.com

 35

the mouse input device); Ted Nelson (invented “hypertext”); and Ivan Sutherland (pioneer of

computer-aided design and graphic editing systems).

Technology: This age saw the beginnings of many hardware revolutions such as the cathode ray

tube displays, memory drums, mouse, etc. Most of these technologies were in experimental

stages at this time and programs were predominantly written in machine level assembly

languages.

Context of computing: The main concerns of this age were issues such as how to format the

outputs of the assembly level programs on punch cards within the constraints of a line printer

with fixed column width and limited formatting capabilities. These efforts were predominantly

towards making the debugging of programs easy and productive. The programmers most often

had to work with “abstruse error messages” from unforgiving platforms that had zero margins for

error. Those were the days when one extra space in a program would require the entire batch of

punch cards to be resubmitted (Pew, 2003).

Context of SE and HCI: Even though they were not referred to as HCI and SE at that time, the

major focus of this age was the creation of higher-level programming languages to help the

dominant users of this time (programmers) become more productive. This age saw the birth of

two such languages: COBOL (Common Business Oriented Language) and FORTRAN. COBOL

used the English language and had documentation capabilities. FORTRAN was geared towards

scientists and mathematicians and made possible to code complex mathematical constructs at a

higher level. We argue that the “usability” of a programming task and the functional capabilities

were the major concerns of this age. Philosophically we believe that this age probably saw the

best connections between the high-level languages’ user (programmer) interface and backend

(programming constructs) until today. Using the terminology of today, we can say that the

functional and interaction concerns were probably best connected during that time. One reason

for these close connections between the UI and backend concerns is probably because they were

not identified as separate domains during this time and that software developers were not yet

aware of the need to address end-user concerns.

www.manaraa.com

 36

2.2.2 The time-sharing/structured programming years – 1967 to 1977
Target users of the era: The main users of this age were trained personnel working for huge

organizations from domains such as insurance, defense, and the Social Security Administration.

Players and visionaries: Alan Kay (introduced parallel programming, windows, and message

passing that would later become foundation to the OO paradigm); Allan Newell and Herbert

Simon (psychology of HCI, human information processing ideas in HCI)

Technology: This age saw two important advances: one, the disappearance of small (relative to

mainframe computers) independent machines and the start of the age of time-shared computers,

and two, the emergence of interactive programming environments. It became possible to switch

several individual users’ programs and memory resources between fast magnetic core memory

and comparatively slower but much larger memory on magnetic drums. The concept of remotely

accessing a time-shared computing resource via a terminal device to perform online transactions

became a reality. Advances in incremental compilers and other programming infrastructure

including the ability to store computer programs in computer files made punch cards obsolete

(Pew, 2003).

Context of computing: There were two main thrusts in computing in this era. One, huge

organizations from domains such as insurance, defense, and the Social Security Administration

started using online systems which contained all the information at a central location to perform

“interactive” transactions from user terminals over telecommunication lines to various

geographic locations. The delay between command and response was significant because of

limitations on the speed of the hardware to access magnetic memories and the network latencies

for remote transactions. This became an important concern and a prominent area of research on

how such delays influence human performance was born. The “user interfaces” themselves were

very limited and consisted of a few “screens” and usually had a “well-defined sequentially-

branched structure” (Pew, 2003). Two, the advent of interactive programming gave the

programmers lot more flexibility in coding and made their job less tedious and more productive.

Programmers could now debug their code small sections at a time. The final years of this era saw

the emergence of packet-switched networks, leading later on to the email revolution,

spreadsheets, and games (Pew, 2003).

www.manaraa.com

 37

Context of SE and HCI: This age started, as part of the structured programming movement, the

need for acquiring user requirements and understanding of “what the user would want to see and

what the user wanted to type” (Pew, 2003). This age represents the beginning of the need for

usability because of the direct use of computers by end users. This was the time that “led to

much confusion and user frustration that was only occasionally addressed directly by usability

studies”. This era also saw the emergence of the human-factors engineers interest in computer

systems, the introduction of concepts from cognitive psychology, and physiological methodology

to design and evaluate human-computer systems (Pew, 2003). Work by Newell and Simon

(1972) in the area of information processing theory of human problem solving spawned the now

well-known techniques of think-aloud protocol taking. With this ground-breaking work a new

partnership between Card, Moran, and Newell emerged which resulted in the birth of serious

HCI research (1980; 1983). This period also saw the emergence of HCI guidelines and principles

(Hanson, 1971). One can argue that this is possibly the start of the shift between the user

interface and functional concerns of systems development because of the rather different

backgrounds of the people involved in the functional side (traditional computer sciences) of

things and those interested in the usability side (psychologists).

2.2.3 The GUI/OO years – 1978 to 1988
Target users of the era: Mostly trained personnel and a few computer enthusiasts

Players and visionaries: Donald Norman (behavioral science and human information

processing to HCI, analytic framework to study human interacting with a computer, “Psychology

of Everyday Things” (Norman, 1988))

Technology: This age saw the advances in hardware that finally paved the way to Graphical

User Interfaces (GUIs) as we know them. Bit-mapped graphics made it possible to have selective

redisplay of complex fonts, icons, and images, and memory cache systems supported multiple

window displays.

Context of computing: The Xerox Star secretarial workstation in 1982, Apple Lisa in 1983, and

Macintosh in 1984 revolutionized the computing arena. This era started the interaction paradigm

of “What You See Is What You Get” (WYSIWYG). It was no longer necessary to wrestle with

abstruse command-line formatting while interacting with word processors. Computing is now

www.manaraa.com

 38

truly within the reach of novice users. Englebart’s mouse, the keyboard, Xerox Star’s desktop

metaphor, with Shneiderman’s direct manipulation (1983) would become a standard of GUI

paradigm until today.

Context of SE and HCI: On the SE side, this was the time of object-oriented (OO)

programming and the realization that the waterfall model (Royce, 1970) is no longer effective

(Pew, 2003). The OO approach facilitated the separation of user interface and functional core

separation, marking the beginning of the separation of the two components of an interactive

system: UI and backend. The limitations of the waterfall model prompted experimentation with

more iterative development processes. On the UE side, there were increasing expectations for

ease-of-use on the part of novice users. The user interfaces started to become complex and the

interaction conceptually became an event-driven one where the user generated events, without

any particular order, by accessing the UI widgets on the interface (Pyla, et al., 2004b). A direct

consequence of this is the emergence of a new group of researchers attempting to study the

theory, principles, and techniques about the UI component; transforming the field of HCI into a

professional discipline (Pew, 2003). Therefore, this age can be considered the time that started

the independent maturation of the SE and HCI domains. Even though two of the seminal

attempts to bridge the UE and SE gap were made during this time (Draper and Norman, 1985;

Mantei and Teorey, 1989), we argue that the disconnect between the two domains increased from

then onwards for a significant number of years (see Section 2.3 for description of these

attempts).

2.2.4 The Internet years – 1989 to 1999
Target users of the era: Wide variety of users from different age groups and with different skill

levels.

Players and visionaries: Deborah Hix and Rex Hartson (provided a complete approach to

engineer the usability process and guidelines for UI design); Jacob Nielsen (introduced discount

usability); Ben Shneiderman

Technology: The TCP/IP protocol and packet-switched networking made a giant network of

computers across the world called Internet possible. Email became ubiquitous and hypertext and

hypermedia made sharing of a rich set of multimedia a reality (Pew, 2003). A variety of browsers

www.manaraa.com

 39

were developed to access this increasing amount of data that became available at a click by

users.

Context of computing: During this period, the Internet became available to the common person

and thereby revolutionized the way business is done across the world. This era also saw the

emergence of Computer-Supported Cooperative Work (CSCW) where people from across the

world could communicate and collaborate. Other dominant applications that came out of this era

include person-to-person communication (instant messaging), File Transfer Protocol (FTP),

video teleconferencing, and attachment support for email (Pew, 2003). With these technologies,

geographic boundaries were quickly surmounted and the world truly became one step closer to

the concept of a single global village.

Context of SE and HCI: This time saw the maturation of both SE and UE domains. Life cycle

processes were becoming standardized and were beginning to be adopted by organizations across

the world. Even though the success rate of software development projects never really achieved

the same level as in other engineering domains, one could say that at least the scope of the

software development problem had become more or less understood. The start of this era saw

some of the first books on the process, activities, and issues involved in developing UIs

(Mayhew, 1992; Hix and Hartson, 1993; Nielsen, 1993; Preece, et al., 1994). The need for

connections between the SE and HCI were being recognized during this time. Hix and Hartson

talk at length about the SE and UE life cycles and clearly show the parallels and the high-level

relations between the two processes (Hix and Hartson, 1993). We argue that this era saw the

beginnings of the realization and identification of the problem of gaps between the two life cycle

processes.

2.2.5 The ubiquitous computing years and the start of the social
networking era– 1999 to present

Target users of the era: Computing truly became available to people from all walks of life.

People from almost all ages, cultures, professions began using computers.

Players and visionaries: Mark Weiser (introduced the concept of ubiquitous computing

(Weiser, 1991) which would be the focus of this age), creators of social networking sites such as

MySpace (2007c), Facebook (2007a), and Orkut (2007d).

www.manaraa.com

 40

Technology: These are the times of ubiquitous computing (Weiser, 1991; Weiser, 1993; Weiser,

1994). Computers were proliferated in different sizes and form factors. Mobile (wireless)

technologies made it possible to be connected even when one is away from one’s office.

Handheld computing (using PDAs, cellular phones, etc) became hugely popular and quickly the

users were inundated with a variety of computing options such as smart phones, wearable

computing devices, PDAs, intelligent environments, portable audio systems, digital cameras, etc.

This ubiquitous availability of computers and the pervasiveness of the Internet made it possible

for vast numbers of people to virtually get connected with one another, forming social networks

which in turn facilitate online collaboration and information sharing.

Context of computing: The face of computing has changed from the personal computer world

of the previous two eras where the paradigm was of a single user interacting with a single

computer. The proliferation of notebook computers and other mobile computing devices

redefined this paradigm and continues to change our work environment, driven by the

convenience of portable computing. As a consequence, users are forced to orchestrate a complex

interaction between multiple devices, moving data and information back and forth, to accomplish

their tasks. With the deployment of computing in various forms and factors, users are forced to

wrestle with multiple technologies. Users trudge out USB key drives, remote desktop software,

e-mail and network file storage in an attempt to orchestrate this complex interaction. The user

interaction is no longer limited to the mouse and keyboard; pen-based, voice, gesture, 3-D

interaction, etc. gained prominence quickly.

Context of SE and HCI: In spite of the commendable level of maturity achieved by these two

disciplines independently, software systems with interactive components still fall far short of

being perfect. And interactive-system development projects still suffered failures due to

disconnected processes, unrealized functionality, poor usability, coming in late in schedule and

over budget. This led to a growing level of awareness about the need to finally bridge these two

life cycle processes.

Taking a historical perspective, it can be reasoned that one of the most important reasons why SE

as a field has failed to connect to the UE discipline is that the processes and activities in SE have

their roots in non-interactive, batch processing based, systems-side applications development

www.manaraa.com

 41

from the previous eras. On the other hand, one plausible explanation for why the UE discipline

failed to connect to the SE domain is a lack of knowledge on the part of the usability engineers

about the processes, constraints and schedules of SE. One can deduce that this lack of

understanding about SE issues by the UE practitioners and vise versa is because of computer

science curricula that attempt to teach students each subject exclusive of the other. Thus, in

neither the SE nor the UE courses do students learn about the other domain and barriers

involved in coordinating these two processes (Pyla, et al., 2004b). However, these years are

starting to see an increasing amount of research towards bridging the two domains (2003c;

2003a; 2003b).

2.3 Bridging the Gaps between SE and UE
Over the years, a variety of efforts have been undertaken by many to bridge the gaps between SE

and UE life cycle processes. One of the earliest attempts to relate the issues involved in the

design and development of user interfaces to that of software engineering was by Draper and

Norman (1985). This work predominantly tries to draw analogies between the software

engineering way of thinking and the then new area of HCI. For example, using the software

engineering metaphor to “run” a program on a particular platform or hardware, the authors

suggest that a similar analogy where the user interface “can be thought of as being run on human

users” and that the concept of a program “bug” should be modified “to allow for part of the

system to be a person” and that there is a need for new “performance criteria for the combined

human-plus-interface system.” Another analogy the authors use is that of the speed-memory

tradeoff in software programs: a program that is optimized for speed uses more memory to hold

the necessary data-structures whereas a program optimized for memory use performs more

operations to write and retrieve data, thereby loosing on speed. The authors point out that user

interfaces too can be optimized for either ease of learning and use or for speed and power. Using

such analogies, the Draper and Norman try to introduce the complexities and other issues arising

with this new component of a software system called the user interface. They also point out the

need for different specifications to account for the UI component, the need for separating the UI

and backend, the need for different programming languages for developing UIs, and how input

methods need to be standardized and abstracted to ease the programmer from being distracted

with the details of different input devices. For the time it was written, this was an insightful and

www.manaraa.com

 42

visionary look at bridging the gaps between the SE and UE disciplines (Draper and Norman,

1985).

The later years saw more attempts to address this disconnect between the two life cycle

processes. With an exception of one approach that merits mentioning separately, these efforts

can be classified under the following main themes. Each of these themes will be briefly

described in the following sub-sections.

2.3.1 Embedding one life cycle’s techniques into another
The most popular approach to bridge the gaps between the SE and UE domains seems to involve

embedding one life cycle’s techniques into another or training one domain role with the skills

required by the other role. For example, Ferre proposes integrating “usability activities” into the

SE life cycle to integrate the two life cycles. He identifies the so-called “characteristics that

define a user-centered process and choose the usability techniques and activities best suited for

inclusion in the software [SE] process” (Ferre, 2003). This work identifies usability engineering

activities that bear a high-level similarity to software engineering activities and merges them into

the software engineering life cycle. For example, the UE’s task analysis is mapped with

“problem understanding” on the SE side. These usability activities were derived from the

literature and were grouped into related categories.

Similar approaches include integrating the UE activities into the requirements engineering

process (Ferre, 2003), into the Rational Unified Process (RUP) in SE (Sousa and Furtado, 2003),

and into the UML specification or similar modeling languages of SE (Barbosa and de Paula,

2003; da Silva and Paton, 2003).

The problem with this approach is that the SE role must be trained in the UE activities and

terminology. Even after such training, one cannot eliminate the inherent functional bias in the

development team because of their primary area of expertise. Software development effort often

involves trade-offs of many kinds between the two sides in a project (resources, level of

functionality, extent of usability testing, etc.). This in turn involves “selling” of ideas for

particular activities and negotiation for resources. Because of this, people in what is still

essentially one role will be in a conflict of interest with needs of the other role. The SE role will

usually opt to build in the functionality over doing usability testing, for example, if the schedule

www.manaraa.com

 43

is tight. Also, another problem with this approach of integrating UE activities into the SE life

cycle is that usability engineers often adopt particular usability activities from a large set of

possibilities based on the nature and context of the project. Arbitrarily selecting some usability

activities that appear to be similar to SE activities runs the risk of using inappropriate or

unsuitable set of techniques towards developing user interfaces because of the limited knowledge

of the SE role about the UE process. Expecting one development role to learn the activities,

techniques, or notations from another domain is not the best solution to bridge the gaps between

SE and UE.

2.3.2 Architectures that support the needs of one process in the
other

Another approach to bridge the SE and UE gap is the use of software architectures to ensure

usability in the developed product. The rationale behind this approach is that the attributes of a

software system are dependent on its underlying architecture (Bosch, 2000). In this approach

usability is treated as a quality attribute that a software system should have (Bevan and Azuma,

1997; Bevan and Bogomolni, 2000). Juristo et al (2003) and Ferre et al’s (2001) work is an

example of this approach. This work considers usability as “just another quality attribute” which

can be provided by an architecture like any other quality attribute. Juristo et al calls this approach

a “forward engineering-perspective to usability in software architectures, as opposed to the

conventional backward-engineering alternative of measuring usability on a finished system and

improving it once the system is practically complete” (2003). We believe this argument is

flawed, and shows a deep misunderstanding of the UE processes, on two counts: one, usability is

not just a quality attribute that can be “plugged” into a system by adopting the “right”

architecture. Two, UE is not a “backward-engineering” approach that tries to measure usability

on a “finished” system. Neither is it true that the attempts to “improve” the usability of a system

are undertaken after the system is “complete.” In fact, when the UE process is properly applied,

formative usability evaluation is a “forward-engineering” method for developing an evolving

interaction design.

Another well cited work that uses the architectural approach to usability is by Bass and John

(2001; 2003). They consider usability an “important attribute” of the system that should be

considered “during all phases of software design, but especially during architectural design

www.manaraa.com

 44

because of the expense involved in adding usability aspects after users have tested the system”.

The authors point out that the traditional architectures such as the Model View Controller (MVC)

(Krasner and Pope, 1988) have been useful in separating the user interface from the functional

core and localizing the effects of frequent changes that are usual on the user interface side. They

argue that these architectures that provide the separation of concerns between what we call SE

and UE efforts are by themselves not sufficient. This is because certain usability aspects

transcend the user interface code and have implications at the functional level. The authors give

the example of a “cancel” usability aspect and how it requires an architecture that allows

command processes to record initial state, supports a separate thread to listen for this command,

and contains a mechanism to inform all the impacted parts of the overall system. The authors

have identified 26 usability features such as cancel and provide architectural implications to each

of those aspects. The authors do not mention a development process or how the use these

architectures map into a SE or UE life cycle.

Ensuring the usability of a system requires a detailed and complex process that is frequently

punctuated by different types of evaluations. In the big scheme of things, we acknowledge that

software architectures do play a significant role in ensuring that the developed systems are

usable, by providing support for usability features in the functional core. However, without a

defined process they are not sufficient by themselves to ensure usability.

2.3.3 Customizable life cycles and frameworks
The last few years have seen the emergence of software development methodologies that are less

process, documentation, and planning intensive and more agile, development-team-tacit-

knowledge based, and styled for “embracing change” (Beck, 1999; Beck, 2000; Horrian,

Mahmud and Karthikeyan, 2003; Paetsch, Eberlein and Maurer, 2003). These new paradigms are

called Agile Software Development Methodologies (Ambler, 2002; Ambler, 2004),

methodologies which have created a heated debate among practitioners and researchers. While

the proponents of agile methods strongly argue the merits of these methods, opponents usually

prefer the plan-based traditional approaches (Deursen, 2001; Duncan, 2001; Glass, 2001;

Boehm, 2002; DeMarco and Boehm, 2002; Leonardi and Leite, 2002; Kääriäinen, et al., 2003).

However, almost all the software development methodologies are points on a continuum of a

planning spectrum where the extremely unplanned approaches by hackers fall on one extreme

www.manaraa.com

 45

and “inch-pebble ironbound contracts” (Boehm, 2002) lie on the other end. Every other software

development methodology falls in between with agile methods being closer to the hacking end

and milestone plan-driven models towards the other extreme (Boehm, 2002).

Extreme Programming (XP) is one of the relatively new software development methodologies

that have the flavor of a traditional UE life cycle. In the words of XP’s creator Kent Beck, “XP is

a light-weight methodology for small-to-medium-sized teams developing software in the face of

vague or rapidly changing requirements.” XP identifies that risk is the basic problem and cost,

time, quality, and scope to be the four variables in most software development efforts. XP also

has four values: communication, simplicity, feedback, and courage. XP advocates “many

practices that can’t be done without communicating” such as unit testing, pair programming, and

task estimation. Simplicity is stressed in the sense that the simplest possible solution to a

problem is recommended for adoption. Frequent unit testing is used as a feedback mechanism to

monitor the state of the system. XP advocates the courage to be able to make fundamental

changes in the architecture of the system if necessary and to throw away code and start over if

needed. Therefore, the basic principles of XP include rapid feedback, assuming simplicity,

incremental change, embracing change, and quality work (Beck, 2000).

Philosophically, this is not different from most of the UE development processes, but there are

large differences in the details. Compared to the heavy weight and rigid SE processes with little

feedback and evaluation components of the past (such as waterfall model (Royce, 1970)), XP

advocates iterative development, frequent evaluation, evolutionary approach to development,

user stories (requirements in XP are in the form of stories written by actual users), metaphors

(XP calls the system architecture a metaphor), etc. XP can be seen as a kind of UE life cycle

process applied to SE development. Interestingly, XP does not mention any techniques or

activities for UI development in an XP-based development methodology.

Even though agile methods (such as XP) do not explicitly mention user interface development

processes, we believe that the underlying philosophy of these methodologies to be flexible, ready

for change, and evaluation centered has the potential to bridge the gap between SE and UE if

they are extended to include the UI development components and techniques.

www.manaraa.com

 46

2.3.4 CS education and curricula standards
Traditionally, the concepts, theory and techniques associated with the user interface (UI) design

domain are taught as a part of Human Computer Interaction (HCI) courses in most computer

science departments. These courses use text books such as (Nielsen, 1993; Preece, et al., 1994;

Newman and Lamming, 1995; Shneiderman, 1998; Rosson and Carroll, 2002) and cover topics

that are completely focused on the user interface side of system development. Little or no

information is provided on the software architectural implications that arise from user interface

design decisions. For example, Rosson and Carroll talk about scenarios and focus on the UE life

cycle and process (2002). They do not provide a clear description of the two development efforts

and the implications for the functional core. The incremental case study provided in this book

proceeds through different interface design stages (as the chapters progress), and ends up with a

system entirely developed and including user documentation. The readers are not informed how

the user interface specifications are communicated to the software developers, nor how the

design constraints are negotiated between the two development bodies.

Students who complete this type of academic HCI course gain little, if any appreciation for the

development process associated with the functional part of the system. They may wrongfully

believe that any usability or user interface specification derived will “somehow” get

automatically implemented by “someone”, which in reality is rarely the case. To the contrary,

simple usability features, such as undo, that the students might take for granted, can have serious

architectural implications in the functional part of the system (Bass and John, 2001).

The SE courses as they are offered in most computer science departments are no better than their

HCI counterparts when it comes to addressing the connections between the two domains. SE

courses often omit any references to user interaction development techniques. We surveyed nine

out of 13 of the top selling books in software engineering/software design and engineering

(according to facultyonline.com website) (2007b). Out of the nine books, only three identify and

dedicate sections to user interface development. Even so, those three still do not address the

dependencies and implications of the two processes on one another. Students completing

software engineering courses that follow the syllabus in textbooks like these obviously will gain

little or no appreciation for the user interface issues and the constraints on the functional core

that may arise due to them.

www.manaraa.com

 47

Some textbooks have attempted to address this issue, but their impact in changing the academic

environment has been minimal. For example, Hix and Hartson (1993) discuss at length the

connections that should exist between UE and the rest of the SE lifecycle. However, because

their book focuses on usability engineering methods and techniques and does not suggest how to

integrate the two domains, the SE community is not really aware of its impact.

In recent years there has been a growing awareness of the importance of bridging the gap

between the SE and UE domains (Pyla, et al., 2004a; Pyla, et al., 2005). There have also been

appeals for curricula that integrate these two disciplines (Douglas, et al., 2002; McCauley, 2003;

Pyla, et al., 2004b). For example, Sefah (2003) points out that there are very few software

engineers who understand the human-centered design process. He states that one of the reasons

for this is the lack of a proper educational framework. He also provides a list of skills that one

should have to perform human-centered design. Latzina and Rummel (2003) reason that because

of the lack of HCI studies available for computer science students, much of the usability training

is left to corporate training workshops. Because of cost and time factors, these workshops are

extremely short (about 2 days) in duration, thereby reducing the course content to “commonplace

statements”. Wahl proposes to teach SE students “usability testing” so that “students can learn

about user-centered design and what makes software usable by running usability tests” (2000).

We believe this focus on usability testing alone to be unsuitably limited as it promotes the idea

that UE is just usability testing that is performed at the end of software development, and that

this is enough to teach user-centered design.

Leventhal and Barnes have been advocating and implementing a curriculum that integrates HCI

and SE within a computer science course that “emphasize(s) some SE notions in the context of

HCI concepts” (2001; 2003). They incorporate some of the SE topics into a project oriented HCI

course. On the other hand, Veer and Vliet appeal for a “minimal” HCI course to be incorporated

into a software curriculum (2001) to train students for a more integrated approach towards

development of interactive systems. Similarly, the joint task force on computing curricula

commissioned by ACM Education Board, IEEE-Computer Society Educational Activities Board,

and other professional societies, also recommends bits and pieces of HCI in their SE courses

(The Joint Task Force on Computing Curricula, 2004). They recommend a separate HCI course

(SE212), similar to a number of pure HCI courses taught in universities, that covers the usability

www.manaraa.com

 48

engineering processes, methodologies, architectures and techniques. Unfortunately, their

recommendations for core software engineering courses such as “Software process and

management” (SE324), “Software Project Management” (SE323), “Software design and

architecture” (SE311), etc. do not even mention user interface issues.

In our work at Virginia Tech, we have also addressed the education aspects of bridging the gaps

between SE and UE (Pyla, et al., 2004b). We prescribe a balanced curriculum where the SE and

UE life cycles are covered equally without any bias toward either of the processes or by

incorporating pieces of one lifecycle’s methodologies into the other. Leventhal and Barnes’

(2001; 2003) suggestions are the closest to our own arguments, even though their approach is

more focused on the HCI components of the curriculum. Moreover, Leventhal and Barnes do not

address the issue of dependencies and constraints between the two lifecycles. We consider these

to be one of the most important aspects the developers of tomorrow should comprehend.

2.3.5 Standards on life cycle processes
A variety of standards have tried to address the gaps between the SE and UE life cycles at one

level or the other. Unfortunately, the significance of the UE life cycle and the importance of

communication, coordination, synchronization, constraints and dependencies, and anticipation

and reaction to change issues are not described or prescribed in most of the software

development standards that exist today. For example, the 31-page IEEE-830 standard (1998) on

recommended practices for software requirements specification (SRS) contains only about 10

lines(!) relating to user interfaces (Section 5.2.1.2 in the standard), and states that user interface

specifications should be a part of the SRS. This part of the standard takes an ad hoc stab at a few

user interface issues (e.g. required screen formats, page and window layouts, screen content,

availability of programmable function keys, etc.) which seem arbitrarily chosen from the

enormous possibilities not mentioned. More importantly, it says nothing about the UE life cycle

process for creating the interaction design, which is a main part of the user interface software

specification. It is misguided (and worse, misguiding) to expect the user interface specifications

to be available that early in the requirements process without having followed a proper UE

design life cycle. We believe that this document should have a reference to another standard for

user interface interaction design requirements.

www.manaraa.com

 49

Another source of confusion with the IEEE-830 standard is that the items mentioned in this

document such as required screen formats, page and window layouts, and screen content are

design specifications for software engineers (the standard includes nothing about how to design

them for usability). For the UE role, “requirements” are mostly stated in terms of usability

attributes such as learnability, subjective satisfaction, ease of use, etc. Even these usability

specifications are subject to calibration and quantification in later stages of the UE development

process.

However, we do not disagree with the intent behind the idea that user interface requirement

specifications for user interface software are properly a part of the SRS. But in reality it is not

possible to generate requirements specifications for user interface software without going though

an iterative process of interaction design and evaluation, but standards such as the above

described IEEE-830 (on SRS) and IEEE/EIA-12207.1 (on software life cycle processes-life cycle

data) (1997) do not acknowledge the kind of life cycle process that is needed to develop a high

usability interaction design. Neither do they acknowledge the myriad relations and dependencies

between the activities and work products of the SE life cycle with that of UE and vice versa.

2.3.6 Scenarios and use cases as bridges
Scenarios are narratives and envisioned design solutions about users’ tasks as they are supported

by the system. Scenarios are usually written in natural language and therefore afford a fluid

communication between various roles that are associated with any software development effort.

In the words of Rosson and Carroll (1995), “the shared context provided by the scenarios

promotes rapid feedback between usage and software concerns, so mutual constraints and

opportunities can be recognized and addressed early and continuously in the development

process”. These scenarios are then refined to determine objects, descriptions, and the interactions

between various objects (this work is targeted towards the OO design paradigm). Software tools

can be used to facilitate this transformation of scenarios (Rosson, 1999). Similarly, attempts have

been made to use scenarios-based design for developing requirements of a software system

(Carroll, et al., 1998).

Another of the task-narrative-based approaches is the application of use cases to connect SE and

UE life cycles. A use case identifies “a thread of usage for the system to be constructed (and)

www.manaraa.com

 50

provide(s) a description of how the system will be used” (Pressman, 2001). Use cases are used in

software engineering to specify requirements and to aid in modeling the design of the system.

Use case generation does not usually involve end-users and is expressed in a system-centered

notation. Some attempts to bridge the gaps between SE and UE use modified versions of use

cases that are more amicable for communication with end users and which are expressed in more

user-centered language (Constantine, 1995; Constantine and Lockwood, 1999; Alsumait, Seffah

and Radhakrishnan, 2002). For example, Alsumait, Seffah, and Radhakrishnan (2002) use “Use

Case Maps” to integrate “task analysis and usability requirement(s) into the traditional software

requirement engineering process.” Use case map “is a visual notation” that describe the starting

points in an interaction sequence (with pre-conditions or triggers that cause this start of the

sequence), “causal chains of responsibilities” which show the actions, tasks, or functions that

should be performed, and end points with post-conditions or results of the task sequence. The

idea is that such a narrative aids in uncovering interaction problems upfront during the

requirements modeling phase itself (Alsumait, Seffah and Radhakrishnan, 2002). Other examples

of modifying or supplementing the traditional software engineering use cases to account for

usability aspects include “essential use cases” (Constantine, 1995; Constantine and Lockwood,

1999)

Even though we recognize the utility of this kind of an approach, we believe that these

techniques require skilled personnel who are well versed with the HCI and UML/Use Case

aspects of modeling software systems. In reality, it is difficult to have designers proficient in

both the SE and UE techniques and notations. We acknowledge that these narrative based

approaches afford a high level of communication between the two development roles from SE

and UE. However, we believe that for such techniques to be effective there is a need for a more

independent process-oriented approach to building systems with interactive components.

2.3.7 A common framework approach
The one related work that does not fall under any of the previous categories but merits discussion

is by Pawar (2004). This work was undertaken as a part of a Masters Thesis in Computer Science

here at Virginia Tech in close collaboration with us. Pawar proposes a “common framework”

that is based on the definition of an “interface between the UE and SE processes.” This work

recognizes the differences in focus, terminology, and techniques between the SE and UE

www.manaraa.com

 51

processes, and defines some coordination and synchronization points where the two life cycle

roles come together. This work also identifies what information should be exchanged at these

synchronization points. This work differs with ours in the following fundamental ways: one,

while Pawar’s approach focuses on particular life cycle processes for the SE and UE, our work

does not align itself to a particular development methodology. Pawar uses the Scenario-Based

Design approach to UE and the Requirements Generation Model combined with Structured

Analysis and Design for the SE life cycle. Our approach is general and can be applied to any

development methodology in either domain. Two, by specifying static information exchange

points, Pawar’s approach does not account for the different levels of iterativeness in the two life

cycle processes. We account for this by using Ripple’s messages (Section 4.2.3) and not

specifying static information exchange points.

2.4 Summary
Recent years have seen a significant increase in the amount of research towards bridging the

gaps between the SE and UE disciplines (2003a; 2003b; 2003c). Starting from the early efforts to

couch the UE concerns in SE terminology (Draper and Norman, 1985) there have been a wide

variety of approaches taken towards connecting the SE and UE life cycles processes. In our

literature review, we found most of these efforts to fall under six main categories: embedding

one life cycle’s techniques into another (Section 2.3.1), using architectures that support one

process’s needs in the other (Section 2.3.2), using customizable and flexible life cycle processes

and frameworks (Section 2.3.3), using cross-pollinated CS education curricula (Section 2.3.4),

specifying standards on life cycle processes to include techniques from the other domain

(Section 2.3.5), and by employing scenarios and use cases as bridges (Section 2.3.6).

www.manaraa.com

 52

3 Chapter Three: Ripple Description Model

3.1 Introduction and Background
Systems development is a complex and dynamically changing endeavor with a highly

interconnected set of activities, each performed by one or more developers. In order to

understand the interactions among these entities in the development space, we first need to

formally define and describe these entities. Only with a complete and unambiguous description

of the various entities can we specify the relationships among them, and the consequences of

realizing those relationships. Formal specification languages have been used to describe

relationships among entities in different domains. For example, in the physical world “objects

move, collide, flow, bend, heat up, cool down, stretch, compress, and boil” and “to understand

commonsense physical reasoning” and to “make programs that interact with the physical world

as well as people” one needs to understand “when they occur, their effects, and when they […]

stop” (Forbus, 1985). The Qualitative Process Theory (Forbus, 1985) defines a formal language

notation that can be used to specify dynamic behavior and physics of everyday physical objects

and how they interact with one another in the world. Similarly, formal notations have been used

in a manufacturing context to describe knowledge about different entities such as materials and

chemical properties of graphite-epoxy composites to manage closed loop control systems

(Matejka and Lagnese, 1998).

In the software development domain, formal modeling has been used to represent file-level

relationships in a software development environment to describe and facilitate concurrent access

to these files by different developers using a software development environment (Barghouti,

1992). Similarly there are other formal specification languages such as ISO LOTOS that describe

the structure of a problem with the idea that it can later be translated into executing software

code (1989). Other process specification languages such as Visual Process Language (VPL)

attempt to describe the software development process as a workflow with start and finish as

endpoints and with a series of “enactions” in between (Shepard, Sibbald and Wortley, 1992).

However these process specification languages are targeted mainly towards the SE life cycle

alone and do not focus on the relationships among different entities which are critical in an

interactive-software development space.

www.manaraa.com

 53

Also, another key aspect that these process description languages do not emphasize is

communication. For an interactive software system, as development proceeds in each life cycle

process, new activities are started, work products are created, new insights are gained, and these

insights, in turn, require changes/updates to work products generated in previously completed

activities. The key to ensuring that these changes and updates are considered by the two roles is

dependent on communication of these needs at just the right time and with just the right

developers. In this chapter we describe the Ripple Description Model which expresses the

various entities and relationships within the systems development space in order to facilitate this

communication.

3.2 RDM
In the context of interactive-software development, the Ripple Description Model, RDM, is

expressed as:

RDM = <L, M>, where

L is a process description language used to describe system development life cycle instances, and

M is a set of mappings among work activities and other elements of a life cycle instance that

embodies a representation of the communication needs.

3.3 Life cycle process description language
The first major component of the Ripple Description Model is the life cycle process description

language, L, expressed as:

L = < V, G>, where

V is the vocabulary of the language, and

G is the grammar of the language.

3.3.1 Language grammar and vocabulary
V and G determine the set of well-formed expressions in L. In practice, these well-formed

expressions are used to produce descriptions of life cycle instances within development projects.

www.manaraa.com

 54

Henceforth we will use the term “life cycle” to refer to a life cycle instance except where

necessary to disambiguate.

Within L, the vocabulary V consists of “terminals” denoted by VT, and “nonterminals” denoted

by VN. The terminals are a set of the lowest level life cycle work activities, including their names

and other attributes. The nonterminals are a set of “blocks” or structured groups (as an

abstraction) of work activities. Thus

V = VT ∪ VN

The grammar G describes life cycle structure in terms of its grouping, sequencing, iteration, and

conditionals. Figure 6 is a schematic diagram of a typical UE life cycle with its VT and VN and a

graphical example of sequence and grouping that can be expressed in G.

3.3.2 Work activities and work products
A work activity is the fundamental unit of a system development life cycle. Each WAwai ∈ has

the form:

wai = <wa-symbolic-name, LC-type, wa-type, wa-technique, wp-affected, developer-role,

developer-name>, where

i is the unique (internal) identifier of the work activity instance. In practice within expressions in

L, the wa-symbolic-name is a mnemonic device to identify the corresponding iwa in a life cycle

description. For example, a work activity instance expression might be cognitive-walkthrough. If

two work activities, iwa and jwa , have identical elements in their tuple, to maintain their

mnemonic value, they should be distinguished by assigning distinctive wa-symbolic-names, for

example, cognitive walkthrough-1 and cognitive walkthrough-2.

LC-type ∈ {SE, UE} is the type of life cycle (software engineering or usability engineering) with

which this wa is associated;

The element wa-type is the name of the kind of development activity such as task analysis in UE

and verification and validation in SE.

www.manaraa.com

 55

Figure 6: Work activities in a typical UE life cycle

The element wa-technique is the technique to be used to perform the work activity, such as

expert inspection or lab-based testing, either of which could be used to perform the formative

evaluation work activity type in UE.

The element wp-affected is the work product artifact, wp, that is created as the result of a work

activity, wai. For example, a hierarchical task analysis diagram might be created as a result of a

task analysis work activity type in a UE life cycle, usability problem lists may result from

www.manaraa.com

 56

formative evaluation in UE, and software requirements specifications can result from

requirements analysis in SE.

The element developer-role is the life cycle role of the person who is in charge of performing the

work activity. Most life cycles have specialized developer roles for a specific work activity, such

as usability evaluator for formative evaluation, software coder for software implementation, and

software tester for code testing. Sometimes there are multiple experts performing a single

developer role for a given work activity. Often a given individual is capable of performing

multiple roles.

The element developer-name is the name of a specific individual who, in the developer role for a

particular work activity, is in charge of performing that work activity. This element uniquely

identifies a particular individual from a set of team members who could take on the developer

role for a given work activity.

These elements of a work activity tuple allow a complete description of a given work activity

instance. For example, a work activity instance named CW-1 and assigned the unique identifier

wa1, representing a formative usability evaluation conducted by a usability evaluator named John

Doe is:

wa1 = <CW-1, UE, formative usability evaluation, cognitive walkthrough, usability problem list,

usability evaluator, John Doe>

Henceforth, we will use the term “work activity” to refer to a work activity instance except

where necessary to disambiguate.

3.3.3 Blocks of work activities

3.3.3.1 The need for blocks of work activities
Figure 6 shows the need to group work activities into “blocks,” each of which can be named as

an abstraction of the contained work activities. For example, “Design” is a high-level descriptor

of a block of work activities including create usage scenarios, design conceptual metaphors,

sketch initial screen layouts, construct prototypes, etc. In L, a block is one or more vocabulary

elements (of VT and/or VN) combined by elements of VN according to the rules and productions of

www.manaraa.com

 57

the grammar, G. In practice the kinds of blocks described in G reflect the real-world reasons for

aggregating work activities, including (for example) iterate, choice_of_any,

ordered_choice_of_any, choice_of_one, do_sequence, etc., which are reflected in the terms VN:

VN = {iterate, choice_of_any, ordered_choice_of_any, choice_of_one, do_sequence, …}

The ellipsis indicates open-endedness, allowing users of L to define their own block types

(elements of VN) as needed.

We define each block within a life cycle description as a kind of abstract work activity which has

the form:

blocki = <block-symbolic-name, LC-type, block-activity-type, block-structure-type, set-of-

contained-work-activities, block-definition, block-developer-name, pma>, where

The element block-symbolic-name is a mnemonic device to identify the corresponding blocki in a

life cycle description. For example, the first block coming from the diagram in Figure 6 might be

called (assigned block-symbolic-name) Analysis.

LC-type ∈ {SE, UE} is the type of life cycle (software engineering or usability engineering) with

which this block is associated.

The element block-activity-type is the name of the high-level development activity type such as

systems analysis in UE and integration and test in SE.

The element block-structure-type identifies the kind of block structure represented. For example,

the block named Systems Analysis (from Figure 6) would be a choice_of_any structure.

The element set-of-contained-work-activities is the set of all wai ∈ VT named within the block

definition. This set can be used to determine aggregate attributes from the constituent work

activities by performing set theoretic operation on this set-of-contained-work-activities. For

example, one could compute the set of all work products affected within a block or the set of all

developers involved in the activities within a block.

www.manaraa.com

 58

The element block-definition is the definition of the block in G, in terms of work activities

(elements of VT) and aggregating terms in VN.

The element block-developer-name is the name of a specific individual who has taken the lead

role for the work activities contained within a block. This element uniquely identifies a particular

individual from a set of people who have the authority and responsibility to perform what is

required in the particular block. This lead person would be the point of contact by other roles for

this abstract work activity. For example, a block instance named Analysis and assigned the

unique identifier block1 representing the systems analysis phase lead by Jane Doe is:

block1 = <Analysis, UE, systems analysis, choice_of_any, {work activities in block}, BL1-

definition, Jane Doe, pma>, where

the definition of block, could include work activities such as prepare and execute ethnographic

field studies, describe target application, create product concept statement, construct business

process model, perform needs analysis, conduct user analysis, perform task analysis, list usability

goals, and specify constraints.

3.3.3.2 Grouping into blocks
The full details of G and how it is used to define blocks are not given here, but are well known

within the computer science discipline. To represent the concept of grouping work activities into

higher-level blocks for the purpose of abstraction in life cycle descriptions, an example of how

the grammar could be defined is as follows:

block → block-symbolic-name: BEGIN block-activity-type

 block-contents-list

 END block-activity-type′ where

block-activity-type = block-activity-type′,

block-contents-list → block-contents-list-item | block-contents-list-item, block-contents-list-item,
and

block-contents-list-item → vT ∈ VT | block

For example, the block-definition of the Systems Analysis block of Figure 6 might appear in L as:

www.manaraa.com

 59

block → Analysis: BEGIN CHOICE_OF_ANY
 Prepare and execute ethnographic field studies
 Describe target application
 Create product concept statement
 Construct business process model
 Perform needs analysis
 Conduct user analysis
 Perform task analysis
 List usability goals
 Specify constraints
END CHOICE_OF_ANY

Where Analysis is the block-symbolic-name, CHOICE_OF_ANY is the block-structure-type, and

the list of work activities between the CHOICE_OF_ANY tags is the set-of-contained-work-

activities.

3.3.3.3 Project management attributes of blocks
Since project managers use a development life cycle instance to manage a project, the life cycle

representation must also contain some project management attributes, such as schedule (planned

completion dates) and budget (resources). As an example, for the previous UE life cycle shown

in Figure 6, we can add some project management attributes to the life cycle description to

represent the planned completion date as shown in final column of the life cycle schematic

diagram in Figure 7.

The final tuple element of the definition of “blocki” in Section 3.3.3.1 is “pma”, which represents

project management attributes of the block. A project management attribute is:

pma=<schedule-attributes, budget-attributes, personnel-attributes, space-attributes, other-

constraint-attributes, other-resource-attributes>

These attributes are used by project managers to associate resources and constraints with each

block of work activities.

schedule-attributes include such parameters (for example) as planned-start-date, actual-start-

date, planned-completion-date, and actual-completion-date ∈ Calendar, which specify,

respectively, the date the work activity was scheduled to begin, the actual start date, the

scheduled date for completing the work activity, and the actual date the work activity was

www.manaraa.com

 60

completed. The list of schedule attributes would be tailored to fit any given project, and can be

updated over time.

Figure 7: A typical UE life cycle with scheduled dates

The rest of the pma elements are more or less self explanatory. The other resource-attributes can

include organizational assets such as computers, servers, personnel, etc. These elements of a

project management attribute tuple allow a rather complete description of the constraints and

resources associated with a block of work activities. For example, a project management

attribute with assigned unique identifier pma1 for a block (abstract work activity) named Analysis

with a start (planned and actual) date of 13 July ‘06, planned completion date of 18 August ‘06,

assigned personnel including John Doe, Jane Doe, and Little Doe, and allocated office of Room

153, would be:

www.manaraa.com

 61

pma1 = < (07/13/2006, 1/10/2007, -), $10,000, (“John Doe”, “Jane Doe”, “Little Doe”), “Room

153”, …>

It is sometimes necessary to isolate particular dimensions of a pma in the context of project

management and their associations with work activities or abstract work activities. For example,

in the final column of Figure 7, we showed the planned-completion-date dimension of the pma

tuples for each of the abstract work activities and excluded the other attributes such as start-date

or RCS dimensions. This can be achieved using projections of a pma, as shown in the next

section.

3.3.4 Projection functions
A work activity or block tuple describes multiple attributes of the activity or group of activities,

each attribute spanning a different dimension in the development space. In other words, a work

activity tuple can be considered to be a vector of dimensions such as work activity type,

developer role involved, and work products generated. However, it is sometimes necessary to be

able to look at one or more dimensions of a tuple representing a work activity or block (or any

other tuple) but not the whole tuple. This requires a projection of the tuple.

More generally, if >=<∈ nxxxxXx ,...,,, 321 , then x is a vector of n dimensions (dimensions 1, 2,

3, …, n) and x is a single point in that n-dimensional space having a value of x1 in dimension 1,

x2 in dimension 2, etc. For example, consider a work activity:

wa1 = <cognitive walkthrough, UE, formative usability evaluation, cognitive walkthrough,

usability problem list, usability evaluator, John Doe>

In this case dimension 2, for example, is the LC-type, and the counterpart of x2 is the value of

wa1 in this dimension, or UE.

A projection function, ∏, is used to extract a projection, an m-tuple, of an n-tuple, where m ≤ n.

In essence, ∏ simply extracts the desired elements from the n-tuple, the others being lost. For x

shown above,

∏i(x) = <xi>, where

1≤ i ≤ n; and

www.manaraa.com

 62

∏i,j,…,m(x) = <xi, xj,…, xm >, where

1≤ i ≤ n;

1≤ j ≤ n;

…

1≤ m ≤ n;

i ≠ j ≠ … ≠ m.

An example of a projection function of our work activity, wa1, with respect to the wa-type and

wp-affected for a formative evaluation, could show the outcome of such an activity to be a

usability problem list:

∏wa-type, wp-affected(wa1) = <formative usability evaluation, usability problem list>

Similarly, a projection function of a different work activity, wa2, with respect to the wa-type and

developer-name for a task analysis, could identify who is performing it:

∏wa-type, developer-name(wa2) = <task analysis, John Doe>

3.3.5 Selection/filtering of work activities
The tuple used to define a work activity, wa ∈ WA, yields a fine-grained specification of a single

work activity instance. Sometimes it is necessary to refer to subsets of WA with more coarsely-

grained specification. For example, we may wish to refer to all work activities associated with a

specific work product, a usability problem list, regardless of, say, the name of the developer who

performed the work activity or the work activity type that was used to produce the list. This

requires a selection of all the work activities whose wp-affected projection is a usability problem

list:

Y = {wa | ∏wp-affected(wa) = usability problem list}, where

Y is a set of work activities. A similar selection function can also be performed on block tuples.

3.4 The Mappings
The second major component of the Ripple Description Model is the set of mappings that are

used to represent relationships that imply communication needs among work activities and

www.manaraa.com

 63

abstract work activities between and within the two life cycles. In the following sections we

present the concepts necessary to describe such mappings.

3.4.1 Boolean state variables
A Boolean state variable is a Boolean function that takes on a value of true or false over time. In

the Ripple Description Model, we define Boolean state variables that are dependent on the state

of various projections of work activities and other development workflow parameters, such as

work products, calendar events, and developer initiatives. States of these workflow parameters

include such project-oriented conditions as “wa being performed”, “wp being modified”,

“specific point on calendar reached”, and “insight gained by developer”. As an example, the

primary Boolean state variable function that applies to a work activity is is_being_performed.

Figure 8 shows examples of this Boolean state variable for work activities wa1 and wa2 as they

go through a state change from false (“activity not being performed”) to true (“activity is being

performed”) and then back to false. Figure 8 also shows that work on wa1 was revisited.

Figure 8: Boolean state values for work activities

The Boolean state variable is_being_performed is defined as:

is_being_performed(wa1)
⎪
⎩

⎪
⎨

⎧
=

otherwise ,
performedactively being

currently is waifonly and if , 1

False

True

www.manaraa.com

 64

The primary Boolean state variable function that applies to a work product is is_being_modified.

Figure 9 shows the Boolean state variables for work products wp1, wp2, and wp3 as they go

through state changes false (“not being modified”) to true (“being modified”) and back.

Figure 9: Boolean state values for work products

Similarly, suppose ∏wp-affected(wa1) = <usability problem list>. The corresponding Boolean state

variable is_being_modified is:

is_being_modified(∏wp-affected(wa1))
⎪
⎩

⎪
⎨

⎧
=

otherwise ,
changedor updated, created, being is

 for walist problem theifonly and if , 1

False

True

As an example, Figure 10 shows the Boolean state variables for developer insights. This

describes the condition where someone in a particular developer role gains an insight into the

project that might have an impact on other work activities in the project.

Figure 10: Boolean state value for developer insights

www.manaraa.com

 65

These types of unary Boolean state variables (a function of one parameter) can be generalized to

n-ary Boolean state variables, as functions of multi-dimensional projections of a work activity.

Therefore if

wa1 = <cognitive walkthrough, UE, formative usability evaluation, cognitive walkthrough,

usability problem list, usability evaluator, John Doe>, then

∏wa-type, developer-name(wa1) = <formative usability evaluation, John Doe>, which can have an

associated Boolean state variable

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∏ −−

otherwise ,
 within waevaluationusability

 formative performingactively
 is DoeJohn ifonly and if ,

))((__
1

1,

False

True

waperformedbeingis namedevelopertypewa

As another example, a Boolean state variable can be expressed as the following projection of a

work activity:

∏developer-role, developer-name(wa1) = <usability evaluator, John Doe>

insight_gained(∏developer-role, developer-name(wa1))

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

otherwise ,
roles

developer and activities
 other workimpact might

atinsight than gains , wa
in performed evaluation

usability theduring
 Doe,John ifonly and if ,

1

False

True

Within a tool-based system development environment it is possible for the values of Boolean

state variables such as is_being_performed or is_being_modified to be detected automatically.

However, in practice, a Boolean state variable like insight_gained would necessarily have to be

self-declared by the developer but could be valuable in communicating about an on-going

development process.

www.manaraa.com

 66

Figure 11 shows another kind of Boolean state variable, which can be expressed as the following

projection of a project management attribute:

date_has_arrived(∏start-date(pma1))
⎪
⎩

⎪
⎨

⎧
≤=
otherwise ,

 calendar) time-te(realcurrent_da
date-start ifonly and if ,

False

True

Figure 11: Boolean state value for a calendar event

This kind of Boolean state variable allows involvement of scheduling events in project life cycle

management.

We have expanded Boolean state variables from unary to n-ary functions. Now we expand them

one more step, to allow sets of tuples as parameters.

Consider WA1 ⊂ WA, a set of work activities:

WA1 = {wa1, wa2, wa3}

We define a set-oriented Boolean state variable,

any_is_being_performed(WA1) = any_is_being_performed({wa1, wa2, wa3})

 =
3,2,1=i

OR (is_being_performed(wai))

Similarly,

all_are_being_performed(WA1) = all_are_being_performed({wa1, wa2, wa3})

www.manaraa.com

 67

 =
3,2,1=i

AND (is_being_performed(wai))

Further, projection and selection can be used to specify sets of work activities dynamically as

parameters of set-oriented Boolean state variables. For example, John Doe doing usability

evaluation in any work activity wa could be shown using:

any_is_being_performed(wa|∏wa-type, developer(wa) = (usability evaluation, John Doe))

Similarly, in certain situations, it might be useful to find all usability evaluation work activities

that John Doe is currently working on. If the result of such query is a set WA3, this can be

determined using the expression:

WA3 = {(wa|∏wa-type, developer(wa) = (usability evaluation, John Doe)) & is_being_performed(wa)}

3.4.2 Time-based events
To support coordination of events within parallel life cycles it is often not enough to know that a

given work activity is currently being performed. It is often more useful to detect when an

activity begins and ends. In such a case we are more interested in state changes, such as wa1

began, than simply state information, such as wa1 is being performed. To derive this kind of

time-based event information from a Boolean state variable, we need a derivative function that

can detect the occurrence and polarity of each state change in a Boolean state variable with

respect to time. We define () variablestateBoolean
dt
d as a time-based event which is a signal

denoting the detection of the corresponding state change. The output of this derivative function,

as shown in Figure 12, is discrete signals occurring over time indicating the detection of state

changes of the corresponding Boolean state variable.

www.manaraa.com

 68

Figure 12: Derivative function of Boolean state variables

Each such time-based event can be named for the state change event it signals. Further, at exactly

the time a rising state is detected, the derivative (signal) is positive. Similarly, at exactly the time

a falling state is detected, the derivative (signal) is negative. When no state change is detected,

the derivative (signal) is zero.

Or, the occurrence of wa1_started is in fact the detection of an occurrence of

0))(__(1 >waperformedbeingis
dt
d . Similarly, the end of a work period on wa1 (shown in

Figure 13), can be represented by the occurrence of the time-based event, wa1_stopped which is

the detection of an occurrence of 0))(__(1 <waperformedbeingis
dt
d .

www.manaraa.com

 69

Since these derivatives have non-zero values as “spikes” or singular points on the time axis, they

are event signals, rather than states. Thus, as shown in Figure 13, we can use the occurrence of

the time-based event, wa1_started, to signal the beginning of a work period on wa1. We use

a ⎯⎯←S b

to show that “a is signaled by the occurrence of b” as shown here:

wa1_started ⎯⎯←S (0))(__(1 >waperformedbeingis
dt
d

)

Figure 13: Time-based events for work activities

As an example of time-based events for set-oriented Boolean state variables defined dynamically

with projections and selections, we can show:

John_Doe_started_usability_evaluation ⎯⎯←S

dt
d

(any_is_being_performed(wa|∏wa-type,

developer(wa) = (usability evaluation, John Doe)) > 0

This time-based event function detects the point in time when the is_being_peformed Boolean

state variable rises to a true value for any wa that has John Doe as a developer and usability

evaluation as the work activity type.

www.manaraa.com

 70

3.4.3 Trigger events
A trigger event is a time-based event that is useful for signaling the need to communicate, in

order to coordinate, or synchronize work activities to support change management or constraint

and dependency enforcement among work activities in the two life cycles, or to notify

developers working on other related work activities such as functional testing in the SE life cycle

to, say, attend the usability evaluation session to watch for any functional problems (bugs). Each

trigger event signifies a need to invoke a particular type of dependency among work activities.

As shown in Figure 14, if two work activities wa-source and wa-target are related to each other

via a relationship r, then the trigger event te signifies the point in time when r should be

enforced. The motivation for such relationships and the need for enforcement are discussed in

the next section.

Figure 14: Dependency relationships among work activities

3.4.4 Motivation for mapping components

3.4.4.1 Dependency relationships
Many work activities in each life cycle have dependency relationships, R, with other work

activities in either life cycle. We identify any two work activities, be it analysis, design,

development, or evaluation and regardless of which life cycle either appears in, to be related or

dependent on one another if work (or other events) in one work activity implies the need to

consider corresponding work (or other events) in the other work activity. For example, if the

usability engineering role is undertaking a task analysis work activity, a new user task implies

the need to at least consider additional functionality to support it on the system side; and, vice

www.manaraa.com

 71

versa, changes in functional analysis imply the need to consider corresponding changes in task

analysis.

Since these dependency relationships are often independent of which developer is performing

either work activity, we think of them as being more dependency relationships between work

activities than between specific developers. Therefore, technically, in cases where

communication is independent of the developer, the communication is between projections of

work activities. Thus, we can view the dependency relationships between work activities in the

two life cycles as shown in Figure 15.

Figure 15: Dependency relationships between work activities and/or their projections

Apart from dependency relationships between work activities in the two life cycles there is also a

need for dependency relationships within a development life cycle. For example, in the UE life

cycle, work on a task analysis work activity may be related to scenario development work

activity as most key tasks need to be enacted using scenarios. Similarly, the scenario

development work activity is in turn related to work activity for developing benchmark tasks as

most key scenarios need to be translated to benchmark tasks for the usability evaluation work

activity. Hence, the relationships look like those shown in Figure 16.

www.manaraa.com

 72

Figure 16: Dependency relationships between and within the two life cycles

3.4.4.2 Communication needs
Identifying the need to consider changes, for example, is not useful unless that need can be

communicated to where it should be considered within the two life cycles. Thus, when a UE

developer performs work on the task analysis work activity, there is a need to communicate this

fact to the SE developer who later works on the functional analysis work activity. Thus,

dependency relationships often indicate communication needs as shown in Figure 17.

Figure 17: Communication needs between work activities and/or their projections

In simple terms, communication adds message content and is the way that dependency

relationships are enforced within Ripple. We often need this communication to be signaled by

the start and end points of work activities which have dependency relationships with other work

activities. These start and end points are trigger events, which are in turn specific time-based

events (Section 3.4.2). Each trigger event, depending on the type of work activity, signals the

www.manaraa.com

 73

need for enforcing a particular type of dependency relationship. For example, the start of a task

analysis work activity on the UE side could signal a “heads-up, potential changes coming”

message, whereas the end of a task analysis work activity could signal a “please synchronize

functional analysis with new task analysis” message.

3.4.5 Structure of mappings
To establish an abstraction for a method to satisfy the needs for communication described in the

previous section, we describe a mapping M as shown below. The mappings of this formal

description model will become messages in the implementation framework and its instances.

M = WAsource × TE × WAtarget × R

i.e. m = <wasource, te, watarget, r>

where WAsource is a set of work activities where trigger events signify the need to communicate,

TE is a set of trigger events, WAtarget is the set of work activities that require consideration for

additional work as a result of work on work activities from WAsource, and R is a set of dependency

relationships among work activities. For the example about task analysis and functional analysis,

the mapping would look like:

m1 = <desktop-client-task-analysis, Jon_Doe_completed_hierarchical_task_analysis, functional-

analysis, consider_changes_to_functional_specifications >, where

Jon_Doe_completed_hierarchical_task_analysis=))(__(pwaperformedbeingis
dt
d

− , and

wap = <desktop-client-task-analysis, UE, task-analysis, hierarchical task analysis, task inventory,

usability analyst, John Doe>

In an implementation of Ripple, when Jon Doe completes the hierarchical task analysis of the

desktop client, we envision him being able to change the status of wap to be completed. And this

would automatically send and queue a message to the effect “UE role Jon Doe completed

hierarchical task analysis on desktop client, consider revising functional specifications to ensure

consistency” to be viewed by the next person who works on functional specifications within the

SE life cycle.

www.manaraa.com

 74

3.5 Summary
In this chapter, we described an abstract formal notation to chart the development space of

interactive-software development. Using the concepts provided here it is possible to construct a

framework that describes the interaction between the SE and UE life cycles, associated roles, and

the environment and tool support required for supporting an interactive-software development

endeavor. We describe one such framework, called the Ripple Implementation Framework in the

next chapter.

www.manaraa.com

 75

4 Chapter Four: Ripple Implementation
Framework

4.1 Introduction
The Ripple Implementation Framework (RIF) reifies the Ripple Description Model to describe

specifically the environment, tool support, entities and various components involved in the

development of interactive systems. The RIF, as shown in Figure 18, is expressed at a level of

detail that is useful for developers to adopt and employ manually for a particular project context

or as a framework on which to design an automated software system (a Ripple implementation)

to manage the communication required between the two life cycles. In this chapter we describe

how such an automated software system might work.

As discussed in Section 1.8 the RIF is agnostic with respect to any particular SE or UE

development life cycle such as waterfall model (Royce, 1970) or the Star Life Cycle (Hartson

and Hix, 1989). This framework provides mechanisms for developer roles within each life cycle

to communicate with one another to allow for coordination, collaboration, synchronization, and

change management while functioning independently. Also, the RIF embraces:

• facilities for developer definition of the abstract and component work activities, and

resulting work products from each life cycle in the integrated development effort;

• facilities for developer’s definition of mappings to capture dependencies, constraints, and

relationships among different entities in the development space for interactive software;

• idea of a constraint subsystem that includes mappings, triggers, and relationship

enforcement via messages, to respect the constraints and dependencies between and within

the two development life cycles; and

• the abstraction to facilitate an instantiation to suit almost any project and resource context.

www.manaraa.com

 76

Figure 18: The Ripple Implementation Framework

4.2 Components of the Ripple Implementation Framework
In the following sections we provide a high-level description of the RIF.

4.2.1 Workings of a software-based Ripple implementation
We envision two user interfaces within a Ripple implementation: one for the developers and one

for the project managers. For a given project, the project manager uses the manager interface to

declare and specify all the required management attributes. These declarations act as

specifications for the behavior and structure of the various entities of a project, including the

www.manaraa.com

 77

work activities and stages or phases of the project. Examples and discussion of these declarations

is provided in Section 4.2.2. Similarly the developer roles use another user interface to access the

development environment which facilitates communication and provides tool support for

interactive-software development. For example, a UE developer John Doe can login to the

system, “start” working on a task analysis by accessing a UI widget that supports such an

endeavor, “create” a hierarchical task list document which will be stored in a work product

repository, and “post” an insight to all developers about the need for the system being developed

to support a new task that he discovered as part of this analysis. The Ripple implementation will

automatically detect the fact that John Doe started task analysis, the work product repository will

automatically detect the creation of this new work product, and Ripple implementation will allow

the developer to create an event for his or her insight, respectively. Upon creation, these three

events will be sent to the event queue component and acted upon appropriately. For example, if a

dependency relationship exists between the UE’s task analysis and SE’s functional analysis:

“every task in UE role’s HTA must have one or more corresponding functions to support the task

on the backend”, the system automatically sends a message to the functional analysis work

activity in SE. This message will be waiting for when the SE role logs in through the developer

interface and starts that activity. Similarly, when John Doe sends the insight about the need for a

new task, the system automatically sends messages to all developers who work on task analysis

and this message will be delivered immediately. We describe the modules and the workings of

such an envisioned project environment in the following sections.

4.2.2 Project declarations via the Ripple project definition
subsystem

Using a project manager interface (as shown in Figure 18) a project manager accesses the Ripple

project definition subsystem to specify the component parts of a project. This module contains

two parts: life cycle description component and project management attribute component. Within

the life cycle description component, the project manager declares the SE and UE life cycle

types, work activities to be conducted as part of the two life cycles, developer roles and names

for these work activities, work product names and formats resulting from these work activities.

Within the project management attribute component, the project manager declares constraints

(e.g. schedules) and resources allocated for the project. We envision a library of customizable

www.manaraa.com

 78

templates to aid the project manager in declaring each of these entities. We describe these two

parts in detail here.

4.2.2.1 Life cycle description
The life cycle description component is an entity using which a project manager can declare

work activities (individual and block) and their attributes for both the SE and UE life cycles. The

entries in this module guide the SE and UE roles in the form of a roadmap of activities and

associated attributes that need to be undertaken during the course of a project. We envision this

life cycle description to be expressed in a structured manner using a data definition language

such as XML, which would then be interpreted by the Ripple software implementation. Using a

project managers’ UI to this XML description, one can declare the name of a work activity (e.g.

initial requirements analysis), the life cycle it belongs to (e.g. SE), the type of work activity (e.g.

analysis), the technique to be used (e.g. user interviews), work product expected (e.g. high-level

software requirements), developer role who should undertake this activity (e.g. requirements

engineer), and the name of the developer who is assigned this job (e.g. John Smith). As

mentioned above, for a common type of work activity such as the one described in this example,

one would have a pre-defined template (that can be customized) for use.

4.2.2.2 Project management attributes
The PMA component is an entity using which a project manager can declare the available

schedules and resources for the project. We envision a calendar-style UI for a project manager to

specify the various due dates for each work activity or block of work activities and the total

resources that are allocated to each of those activities. For example, for a requirements analysis

activity, the project manager may assign a due date (e.g. 8/24/07), two developers to help John

Smith (e.g. Jane Doe and Jack Brown), and a project room to conduct user interviews (e.g. Room

123 from 8/12/07 to 8/24/07). We envision this component to have mechanisms to automatically

detect calendar-based events and sending them to the event queue (Section 4.2.4.2) to be acted

upon by the trigger event listener (Section 4.2.3.3).

4.2.3 Ripple constraint subsystem
The constraint subsystem is a module that would include functionality to represent, observe, and

enforce the various dependency relationships among different entities between the two life cycles

www.manaraa.com

 79

during development. In the following sections we provide background, and envisioned workings

of a software-based Ripple implementation for this subsystem.

4.2.3.1 Background
A constraint is a “relation that must be maintained” (Borning and Duisberg, 1986). Such

relations are generally enforced by “delegating to the constraints solver the task to satisfy them

automatically” (Kwaiter, Gaildrat and Caubet, 1998). In other words, a constraint-based system

is one that automatically updates a predefined set of relations and dependencies between

different entities when a change occurs in one or more of such entities. Constraint-based systems

were traditionally used to specify declaratively the relative layout of interface objects according

to pre-specified rules (Szekely and Myers, 1988). Some of the other important applications for

constraint-based systems include:

• specification of relations (constraints) among the user interface objects that should be

maintained upon resizing a given UI window (Mugridge, Hosking and Grundy, 1996),

(Chok and Marriott, 1995),

• visual representation of simulation algorithms (Ege, 1988),

• automatic updating of (to make consistent) multiple views representing the same data

when the objects in one of the views is changed (Borning and Duisberg, 1986), and

• triggering of events based on changes made to objects in a dataset (Bharat and Hudson,

1995).

This last application of constraint-based systems is the one that corresponds to our focus.

Different time-based events (discussed in Section 3.4.2) in the development space have the

potential to trigger other events that need to be performed to regain stability in the design that

was lost due to the occurrence of the said time-based event. In order to address this need, the

constraint subsystem has three components for: mappings description, observing trigger events,

and enforcing relationships.

4.2.3.2 Mappings description
The mappings description component is an entity using which the project manager can declare

the different relationships that exist among various entities within the development space. For

example, consider the relationship between the SE role’s functional decomposition work product

www.manaraa.com

 80

and the UE role’s hierarchical task list work product: a change to one of these work products

requires at least a consideration of change to the other. Therefore a project manager, using

his/her UI, can declare a mapping between these two work activities to include the source work

activity (e.g. HTA by UE role), trigger event that perturbs the design space (e.g. new task

description added to HTA by UE role), related work activity elsewhere in the design space (e.g.

functional analysis by SE role), and the type of relationship (e.g. every task in UE role’s HTA

must have one or more corresponding functions to support the task on the backend).

4.2.3.3 Trigger events listener
We envision the trigger event listener to be an automated software agent that would constantly

monitor the event queue (Section 4.2.4.2) for different time-based events that signify the

invocation of the need to enforce a relationship. These events include occurrences such as a

developer gaining an insight about the software system being developed, start or stopping of a

work activity, creation or modification of a work product, reaching of a calendar date, etc. For

each time-based event arriving at the event queue, the trigger events listener checks the

mappings description to identify the corresponding relationship, and delegates the enforcement

of that relationship to the relationship enforcement component (Section 4.2.3.4) by passing to it

the event and its corresponding relationship. For example, in the case of the UE role creating a

new task in the HTA, the module upon verifying the existence of a relationship wherein the SE

role is required to update their functional decomposition work product, informs the relationship

enforcement component to notify the SE role about this change.

4.2.3.4 Relationship enforcement component
We envision the relationship enforcement component to be a software-based communication

agent in the RIF. Upon notification from the trigger event listener (for example, via a software

call), the relationship enforcement component extracts the relationship that was passed by the

trigger event listener and retrieves the corresponding message description (text) from the

message repository (Section 4.2.4.3) and sends it to the appropriate entity of the target work

activity or developer role as described in the relationship. For example, when an event arrives at

the event queue marking the case of the UE role’s adding a new task to the HTA, the relationship

enforcement component extracts the relationship “every task in UE role’s HTA must have one or

more corresponding functions to support the task on the backend” and identifies the

www.manaraa.com

 81

corresponding message in the message queue, which includes a more human understandable

description and context. This message is then communicated to the functional decomposition

work activity in the SE life cycle. Therefore the next time a SE role attempts to do the functional

decomposition work activity this message is shown.

4.2.4 Ripple repository subsystem
The RIF has three storage components, each of which maintains a repository of different

development artifacts. Each of these components is described here.

4.2.4.1 Work product repository
The RIF represents the various work products of the combined design process in a single

repository with each of the SE and UE roles having two separate views to this dataset. We

envision this to be a shared design representation where each developer roles can access

appropriate work products created by colleagues in their role or the counterpart role via a

developer interface to ensure design consistency across the overall process. Developers are

required to post new work products created at the end of each work activity here. We envision

the work product repository to be a document versioning system where access is controlled and

any change made to the documents are logged and incremental versions maintained. The Ripple

implementation of this repository would also have mechanisms to detect and queue events as and

when time based events for work products such as work product created or is being modified

occur. Once detected, these events are sent to the event queue to be acted upon by the trigger

event listener.

4.2.4.2 Event queue
We envision the RIF to have a component that would maintain a list of events that are generated

by the various entities during a development project. This component gathers inputs, in the form

of events, from developer roles, the work product repository, PMA component, project

managers, and the Ripple implementation system itself. These events are in turn acted upon by

the trigger event listener. An example of a developer role generated event could be deliberate

messages sent by a particular developer to others in the project to, say, share an insight about the

project. An example of a Ripple implementation system generated event could be the system

detecting that a particular developer role has started a work activity (discovered by the fact that

www.manaraa.com

 82

the developer role just initiated that work activity via the developer UI) and sending that event to

the event queue.

4.2.4.3 Message repository
The message repository is an entity using which the project manager can define different

messages to go with the different relationships described in the mapping description component.

We envision these messages to be declared at the start of the project from preexisting templates

which can be customized to suit a particular project. We discuss a few message types that could

be common in a project.

“Work activity performed” message
The work-activity-performed message informs the two roles about the completion of a particular

activity or phase in the life cycle and contains a link to the relevant products (in the work product

repository) of this development stage. Developers in the other life cycle or developers at a

different stage of the project within the same life cycle can use this link to view the product

artifacts. This message is generally used when the type of communication is purely informational

and no corresponding action is necessarily required. For example, when the usability engineers

complete the initial screen layouts or the derivation of the conceptual metaphor for the

interaction design, they can send this type of message to the software engineers to let them know

about the progress and to allow them to peruse the results. Another example for this type

message is when a usability engineer wants to give a “heads-up” to the software engineers about

completion of a screen design so that the SE role can start making plans to implement it, pending

evaluation.

“Synchronize activity” message
The synchronize-activity message informs about the need for a joint activity, or at least the need

to get together to collaborate directly on a problem, by both the SE and UE roles. In other words,

this message addresses the synchronization need for activities that require a combined presence

of the two developer roles. For example, when the usability engineers plan an evaluation session,

they can send this type of message to the software engineers to request them to be present (to

help argue the case for required changes in the user interface when the SE role sees the users

having problems). Similarly, early systems analysis and ethnographic study activities that require

www.manaraa.com

 83

joint presence can be arranged using this kind of message (to help identify the broader

constraints of the project and get the overall context).

“Work product modified” message
The work-product-modified message is used to enforce the consistency of data objects in the

work product repository. This message informs the developer of the need to perform a

consistency check on products of the two development roles. For example, in the object oriented

development paradigm, this type of message can be initiated after the use-case specifications

phase in the SE life cycle or the usage scenario descriptions in the UE life cycle. Since these two

stages of development concentrate on two aspects of the same issue: interaction between the

system and user, there is a need to ensure that they are consistent. Another important example for

the need for consistency is after the usability specifications phase in the UE life cycle and

functional requirements in the SE life cycle. A consistency check message is required here to

initiate an analysis that ensures that these specifications are supportable by the functional core

(and to discuss alternatives if not supportable or negotiate for middle ground). This type of a

message is used to enforce such necessary consistency checks.

“Insight gained” message
The insight-gained message is used by a developer role to inform other developers of insights

gained in one part of the design and the potential effects of that insight in that and other parts of

the design. This is perhaps the most useful message in the development of interactive systems

because of the potential for constant and frequent changes in the products during the

development life cycles. As an example, this message can be used when a new task is identified

by the UE role, and that new addition should be communicated to other development activities

within the UE role and to the SE role. Upon the receipt of the message by the SE role, efforts can

be made to incorporate the necessary functions in the functional specifications to support the

corresponding task. These updates in the functional specifications, in turn, can cause more

insights and therefore trigger further changes in various dependent stages’ products in the

integrated life cycle.

www.manaraa.com

 84

“Calendar date arrived” message
A calendar-date-arrived message is used to announce upcoming schedule dates for the project.

Examples of such a message include informing the development roles of an upcoming project

deadline or the need for completing a particular work activity for review.

4.3 Potential Downsides of the RIF
The RIF has potential for the following downsides due to the various overheads and additional

tasks that arise because of the coordination of the two life cycles:

• Increase in time or cost of the overall software development life cycle;

• Additional effort required by the roles in each life cycle for maintaining the design

representation framework;

• Additional effort required for coordination of various activities and schedules;

• Need for stricter verification process than conventional processes to enforce the various

synchronization checkpoints during the development effort; and

• Resource overhead to carry out all the above mentioned drawbacks.

However, we believe that not all of the above listed factors will materialize in all cases and

situations where the RIF is instantiated. Also, some of these potential downsides such as the need

for stricter verification could actually turn out to be advantages because the greater the

verification effort the higher the probability of discovering potential problems early on in the life

cycle. Even with the incidence of one or more of these downsides in a project, we believe that

the advantages of using a framework like RIF to connect the SE and UE life cycles will outweigh

any potential downsides.

4.4 Summary
In this chapter we described the Ripple Implementation Framework, which describes the key

components, potential tool support, and development environment necessary to support an

interaction-software development effort. One of the key components of this framework is a

storage subsystem, which acts as a shared design representation where UE and SE roles can

store, access, share, and manipulate the various work products that are created during a

development effort. Another important component of this framework is the constraint subsystem

www.manaraa.com

 85

that can be instantiated to record, propagate, and enforce the various dependency relationships

that exist among the various entities between the SE and UE life cycles.

www.manaraa.com

 86

5 Chapter Five: Ripple Implementation Instance

5.1 Introduction
As described in Chapter Four, the Ripple Implementation Framework describes the environment,

tool support, entities and various components involved in the development of interactive

software systems. As mentioned in that chapter, one can manually instantiate the RIF, if

necessary to suit the constraints and context of a project. In this chapter we describe one such

manual instantiation for an academic setting, as a proof of concept and background for an

exploratory study. We used this instantiation to facilitate the team project portion of a cross-

pollinated SE-UE course offering.

We requested and got approval from the Department of Computer Science at Virginia Tech for a

coordinated offering of Dr. H. Rex Hartson’s graduate-level usability engineering (CS/ISE 5714)

and Dr. James D. Arthur’s graduate-level software engineering (CS 5704) courses. These courses

were offered in the fall of 2006 as a testbed for exploratory study to evaluate Ripple and to

expose students to the concepts of connecting SE and UE life cycles. In this joint offering

students in the SE class were trained for the SE role and students from the UE class were trained

for the UE role. Students who were enrolled in both classes were trained as dual experts. As part

of an exploratory study, all teams in this joint offering were assigned to different development

conditions (discussed in Section 6.3.1) and were required to work on a semester-long project to

develop a software system to facilitate the annual plant sale for the Horticulture Club of Virginia

Tech. Two of the eight teams from this study used this Ripple Implementation Instance as their

development condition. More details of this exploratory study are presented in Chapter 6.

5.2 Components of the Ripple System Implementation
Instance

As described in Chapter Four, the Ripple Implementation Framework has the following high-

level modules: project definition subsystem, repository subsystem, and constraint subsystem. We

describe the instantiation of each of these entities and their components for a classroom setting in

the following sections.

www.manaraa.com

 87

5.2.1 Project definition subsystem
The project definition subsystem in the RIF is used to declare the various project management

entities such as life cycles to be employed, work activities to be used, PMAs available etc. For

this instantiation the experimenter (author of this dissertation) played the role of a project

definition subsystem and manually declared these attributes on paper. Specific details of the

various components of this instance are as follows.

5.2.1.1 Life cycle description
For this Ripple Implementation Instance the project specifications section of the syllabi of the

two classes, where the processes the teams need to adopt were described, acted as the life cycle

description. The SE and UE roles checked these documents for instructions on what upcoming

work activities are and what resulting work products were expected of them as deliverables.

Figure 19 and Figure 20 show the high-level declaration of the life cycle description and project

schedule for the two processes (each of these activities listed here had detailed specifications

accompanying them that are not shown here). Appendix G contains a more detailed project

schedule.

www.manaraa.com

 88

Figure 19: SE life cycle description

5.2.1.2 Project management attributes
For this Ripple Implementation Instance the deliverable deadlines for the semester-long projects

the teams conducted were used as project management attribute declarations. Because of the

academic setting, there was no explicit assignment of any resources to the teams. The teams

acquired their own resources for the project and used the meeting rooms in the university library

and other conference rooms. The project management attributes for the two life cycles are shown

in Figure 19 and Figure 20:

www.manaraa.com

 89

Figure 20: UE life cycle description

5.2.2 Ripple constraint subsystem
For this Ripple Implementation Instance the experimenter played the role of the Ripple

constraint subsystem. The experimenter kept track of calendar dates, changes to work product

repository, start and stop of work activities by various student developers, and enforced the

various dependency relationships via email (instead of automated) messages. Specific details are

as follows.

www.manaraa.com

 90

5.2.2.1 Mappings description
For this Ripple Implementation Instance mappings signifying coordination between SE and UE

roles were listed based on anticipated client meetings with each individual role. As described in

Chapter 6, the meetings of each developer role with the client were carefully controlled and

scripted. As and when a particular role scheduled a meeting slot with the client, a coordination

style mapping was recorded in the mappings description maintained by the experimenter. A

chronologically ordered list of coordination mappings is shown in Table 1. All relationships in

this instantiation were mapped to developer roles and not to work product repository or work

activities for ease of execution.

Source Trigger Relationship
UE initial meeting with client UE schedules appointment

with client
SE presence or representation is
encouraged at this meeting

SE initial meeting with client SE schedules appointment
with client

UE presence or representation is
encouraged at this meeting

SE requirements validation meeting
with clients

SE schedules appointment
with client

UE presence or representation is
encouraged at this meeting

UE low-fidelity prototype
walkthroughs with clients and club
members

UE schedules appointment
with client

SE presence or representation is
encouraged at this meeting

UE formative evaluation with clients
and club members

UE schedules appointment
with client

SE presence or representation is
encouraged at this meeting

SE customer acceptance meeting with
client representative

SE schedules appointment
with client representative

UE presence or representation is
encouraged at this meeting

Table 1: Coordination mappings used in this Ripple Instance

Constraint and dependency mappings were created dynamically as and when a new work product

was posted by the SE or UE roles. The reason for this on-the-fly after-the-fact mappings creation

was due to the fact that the SE class did not mandate a particular approach to developing the

functional core (e.g. structured programming, Object-Oriented development, etc.) and therefore

the actual software engineering work activities being undertaken were not known until after they

were executed and the resulting work products were posted as project deliverables. When a work

product was posted the work product was analyzed to find dependences between that and the

counterpart UE role’s work products and any mappings discovered were recorded. These two-

way mappings are shown in Table 2 in no particular order and were all triggered as and when a

deliverable was posted.

www.manaraa.com

 91

Work product Related to:
SE use cases/requirements UE usage scenarios
UE screen prototypes SE data dictionary attributes
SE software requirements/functions UE hierarchical task analysis and task objects

(as identified by scenario annotations)
SE data flow diagrams UE task sequences
UE business process modeling SE software interface description (external

machine interface)
SE software interface description for human
interface

UE usability goals

SE state transition diagrams UE state transition diagrams
SE software architecture (supports) UI features such as undo, cancel,

auto-field-completion, drag and drop, etc.
SE low-level design UE hierarchical task inventory
UE cost-importance table SE resources available

Table 2: Dependency mappings between the two life cycles

Mappings among the work activities in the same life cycle were not listed or defined for this

instantiation.

5.2.2.2 Trigger events listener
We used a Wizard-of-Oz approach to instantiate the trigger event listener. The experimenter

played the role of this component behind the scenes by constantly observing the progress of each

team and “triggering” necessary events to keep the two life cycles connected. For example,

whenever a mapping was observed, necessary action trigger event was “fired”. An example is

provided in the following subsection.

5.2.2.3 Relationship enforcement component
Similar to the trigger event component, we used a Wizard-of-Oz approach to instantiate this

component. The experimenter “enforced” each relationship by “firing” an email message to the

relevant team. These email messages contained information about what the receiving developer

role should do to ensure the two life cycles are in agreement. For example, for the coordination

type mapping such as UE role conducting client walkthroughs of their low-fidelity prototypes

requiring SE representatives being present, an email was sent to the SE role every time the UE

role scheduled a walkthrough meeting with the clients asking them to have representatives at this

meeting. Examples of actual email messages that were sent during the duration of the project are

shown in Table 3.

www.manaraa.com

 92

Team UE-**,
 Your counterpart team, SE-**, is scheduled to meet the project
clients on Friday, Sep 15th at 12:00 noon in McB618, to conduct
requirements validation. It is recommended that you have
representatives from your team at the meeting to ensure that you are on
the same page with the SE team.
Also, this will be a good opportunity to see your SE counterpart team's
requirements analysis and gauge the direction they are taking.
Good luck,
-Project directive module
Team **,
 The UE experts in your team are scheduled to meet the project
clients on Monday (Oct 30th) from 3.00PM to 4.00PM in a place TBD, to
conduct their formative evaluation. It is recommended that you have
representatives from the functional side of your team at this meeting.
This may be a good opportunity to see your team's design in action as
users perform key tasks using a hi-fi prototype of your system.
Good luck,
-Project directive module
P.S.: You will be informed of the location of these meetings as soon as
it is decided.
Team **,
 The UE experts in your team are scheduled to meet the project
clients on Monday (Oct 30th) from 3.00PM to 4.00PM in a place TBD, to
conduct their formative evaluation. It is recommended that you have
representatives from the functional side of your team at this meeting.
This may be a good opportunity to see your team's design in action as
users perform key tasks using a hi-fi prototype of your system.
Good luck,
-Project directive module
P.S.: You will be informed of the location of these meetings as soon as
it is decided.
Team **,
 Very soon you will be performing your cost-importance analysis. It
is recommended that you take inputs of your SE members on the cost-to-
fix attribute for your usability problems as they are the ones who will
make these changes on the functional system (and not the prototype).
Good luck,
Project Directive Module
UE-Team**,
 Your counterpart SE team is doing a code/preliminary demo with
Mr.*** ******* (GTA for SE class). It is recommended you have a
representative from your UE team present there. This demo might provide
some insights about constraints the functional parts of the system
might have on your UI designs.
Time: 4:00 to 4:30 pm on 10/25
Location: MCB 133
Good luck,
--Project directive module

Table 3: Examples from message repository

www.manaraa.com

 93

5.2.3 Ripple repository subsystem
For this Ripple Implementation Instance, we used a combination of online and paper-based

devices to realize the repository subsystem. Specific details are as follows.

5.2.3.1 Work product repository
In this Ripple Implementation Instance, we used a forum-based online group email as work

product repository for the teams. Each team was provided with a Google GroupsTM email ID.

Emailing this ID transmits the message to all members of the group. This group email ID has

functionality to maintain threads of email and to access all email posted to the group via a forum-

styled web interface (Figure 21).

Figure 21: Group email interface as a work product repository

An email thread titled “Deliverables” was created by the experimenter and all teams were

required to post their completed work products as replies to that thread. In other words it was

possible for any member of the group to log into the web interface for the group and access

www.manaraa.com

 94

deliverables from this thread. This served as a work product repository for the team members

(Figure 21).

5.2.3.2 Event queue
For this Ripple Implementation Instance the experimenter sent emails in real time (as and when a

trigger event was observed) and no queue was maintained.

5.2.3.3 Message repository
For this Ripple Implementation Instance the experimenter maintained a set of predefined

messages in a text document that were used as email content by the relationship enforcement

instance. This list was updated as and when new relationships were discovered. A subset of this

message repository is shown in Table 3.

5.3 Summary
As described previously developers can adopt and employ an instantiation of the Ripple

Implementation Framework manually for a particular project context or implement an automated

software system (a Ripple implementation) to manage the communication required between the

two life cycles. In this chapter we described a manual instantiation where we enforced mappings

at a much courser granularity. For example, instead of mapping trigger events at the level of a

completion of a work activity as illustrated here, it is possible, if desired, to fire events when

individual components of a project deliverable are completed or if these deliverables are updated.

The only requirement for such lower granularity event detection is a work product repository that

can capture such changes to the work products. Similarly unlike in this instantiation, it is

possible to map relationships within the same life cycle also if needed.

www.manaraa.com

 95

6 Chapter Six: An Exploratory Study

6.1 Introduction
The next step in this research was to evaluate the Ripple concept as embodied in the Ripple

implementation instance. In this chapter we provide a detailed description of an exploratory

study we conducted in a classroom setting, discussion on software metrics, how we derived our

metrics, team distribution, clients, and other aspects pertaining to this study.

6.1.1 Full summative study not feasible
Theoretically, the most scientifically rigorous way to evaluate a software development

framework such as the Ripple Implementation Framework would be to use an experimental

design in which large number of software development teams (of the same size and balanced for

skills and experience) are employed to develop the same software system, using the same

software development methodology, for the same client, with half the teams randomly assigned

to use an instantiation of the Ripple Implementation Framework and the other half not. By

controlling all other factors that could potentially impact the quality of the system or

performance of the teams in the experiment, one hopes that such an experiment would make it

possible to establish cause-effect relations between any quality or performance indicators of the

process employed by each team and the resulting product due to the use (or not) of the Ripple

Implementation Framework. Also, if the number of teams is large enough, one could check for

statistical significance in the measures (or indicators) of dependent variables as a causal outcome

of using (or not) the Ripple Implementation Framework.

However, such an evaluation of a software development framework such as Ripple in an

experimental setting with a large number of real teams of professionals building the same system

using different development frameworks is practically not possible.

The most obvious reason is that such an undertaking would be ludicrously expensive given the

resources necessary to conduct an experiment of such magnitude. In fact, we know of no real-

world software development organization that can afford to do even two fully parallel

development efforts on the same software product. Furthermore, given the complex nature of

interactive-software development, it is impossible to control all factors (assuming it is possible to

www.manaraa.com

 96

identify all factors in the first place) involved in the development space. Furthermore, to show

how difficult this would be in practice, here are some practical requirements for an organization

as a setting for this kind of study:

• have the two life cycle processes (for SE and UE) in place,

• be willing to allow us to deploy a Ripple Implementation Instance in their development

process,

• agree to let us observe and make measurements of their processes for the entire duration of

the development process, and

• be able to afford multiple redundant development efforts for a given project.

Finally, even if the above problems could all be solved, any results from such an experiment will

suffer from external validity problems as these results cannot be generalized to contexts where a

different set of factors are at play: different size of development team, different skills or

experience of teams, different software development methodology in use, different type of

software system being developed, different type of client interaction, etc.

Thus due to the prohibitive cost of personnel, the impossibility of controlling all factors

necessary to evaluate systems-level frameworks in a summative study, the lack of an

organization that would allow us to mount such a rigorous study, and the infeasibility due to

practical considerations, this kind of a study was not an option for evaluating the Ripple

Implementation Framework. Therefore, we conducted an exploratory quasi-experiment, which is

discussed in the next section.

6.1.2 Alternative kinds of studies and our approach
If controlled experiments are on one end of the spectrum of scientific rigor in evaluation, case

studies are on the other end. Case studies often afford no control to the evaluators or observers

on the various factors of the study. In this type of evaluation, one often observes a phenomenon

and attempts to identify potential relations between the various aspects that were at play in the

study and any perceived outcomes thereof. Because of the lack of control on the various aspects

such as, say, team size in our case, these studies lack internal validity. In other words one lacks

the power to ascertain the cause and effect relationship between the various aspects and

perceived outcomes of interest in the study.

www.manaraa.com

 97

Another kind of studies which fall somewhere in between the two extremes described above are

called quasi-experiments. Quasi-experiments are “experiments that have treatments, outcome

measures, and experimental units, but do not use random assignment to create the comparisons

from which treatment-caused change is inferred” (Cook and Campbell, 1979). Therefore, using

the example of evaluating a software framework, these studies suffer from internal validity

constructs and it is not entirely possible to relate the observed quality of the process and product

to the type of framework used because, for example, different types or sizes of teams were used

for the different conditions of software development.

Given the constraints stated above, we opted to conduct an exploratory quasi-experiment. The

reason why we call it exploratory is because of the lack of control we had on different aspects of

the study (discussed in Section 6.4) and the fact that we did not have enough number of teams to

conduct a rigorous experiment (with potential for statistically significant results). The reason

why we call it quasi-experiment is because we could not have randomized (and balanced) team

assignments due to various constraints inherent in our approach (discussed in Sections 6.4.3 and

6.4.5).

We conducted this evaluation of the Ripple Implementation Framework in a classroom setting

using the Ripple Implementation Instance described in Chapter 5. We compared eight groups of

students, two of whom using and the others not using a Ripple Implementation Instance with

measuring instruments described in later sections. Although we recognize that using courses as a

setting and graduate students as practitioners has severe limitations concerning the fidelity to a

real-world development environment, it was the only feasible venue for this study. Moreover, a

classroom-based evaluation enabled us to address our two research goals (Section 1.5), i.e. to

connect the SE and UE life cycles with respect to project development environments and by

creating a cross-pollinated SE-UE course offering.

During the semester students in the UE class were trained for the usability engineer role and

were taught the life cycle concepts and guidelines for building user interfaces. Similarly, students

in the SE class were prepared for the software engineer role and were taught the life cycle

concepts for functional core development. In semester-long team projects, these software and

usability engineers worked in teams to develop software systems with interactive components for

www.manaraa.com

 98

a controlled set of real clients. Such a setting provided considerable control on the projects, team

compositions and domain of expertise of team members, timelines, clients, project scope,

evaluation, and observation. However, in this setting it was not possible to control factors that

fell outside the purview of the classroom and the instructors such as team members’ schedules,

meeting habits, team members’ expertise, etc.

We describe the experimental design, procedure, participants, metrics, analysis, issues,

constraints, and limitations in the following sections.

6.2 Research Design
Our exploratory quasi-experimental study to evaluate a Ripple Implementation Instance in a

classroom setting had two independent variables: domain of primary expertise (SE, UE, and

SE+UE) and development conditions used by teams to match different real-world scenarios, as

shown in Figure 22. The dependent variables were measures of communication factors among

different life cycle roles, pedagogical factors, and others.

Figure 22: Experimental Design

The classroom setting allowed us some degree of control over the independent variables in the

experiment, i.e. we were able to control distribution of students into teams. Domain of expertise,

our first independent variable was determined as follows: students from the SE course were

considered experts in development of the functional part of the system and students in the UE

course were considered experts in development of the UI. Students taking both courses were

considered as dual experts.

www.manaraa.com

 99

Development condition, our second independent variable, was controlled to a largest extent

possible by assigning teams to different conditions. However due to an unequal number of

students enrolled in the two classes, we had unbalanced number of teams for this variable. The

team distribution and composition are shown in Table 4.

Team

Team type SE role UE role Role/setup/end product Real-world
scenario

A1 Joint team
(Ripple)

3 SE
students

3 UE
students

A2 Joint team
(Ripple)

3 SE
students

4 UE
students

• Distinct roles working together
• Knew counterpart team from start
• Developed fully-functional system

Teams with both
SE and UE roles
working together

from start
B1 Joint team

(non-Ripple)
3 SE

students
4 UE

students
B2 Joint team

(non-Ripple)
3 SE

students
4 UE

students

• Distinct roles working independently
• Counterpart team introduced after

design
• Developed fully-functional system

Usability engineers
brought in at the
end of the life

cycle

C Dual experts
team

3 students who
took both classes • Played both roles

• Developed fully-functional system

Software
developers doing

usability
D1 UE-only

team
- 5 UE

students
D2 UE-only

team
- 5 UE

students
D3 UE-only

team
- 4 UE

students

• Played usability engineer role only
• Had no counterpart team
• Developed high-fidelity prototype

without functional core

UI work contracted
to a

different/external
team

Table 4. Experimental setup and team distribution.

6.3 Procedure
Using the Virginia Tech joint course offering of Software Engineering (CS 5704) and Usability

Engineering (CS/ISE 5714) described in the previous section, students from the UE class were

trained in the usual way for the UE role and taught the life cycle concepts for building user

interfaces. Similarly, students from the SE class were prepared, for the SE role and taught in the

usual way the life cycle concepts for functional core development.

A semester-long project undertaken by each team constituted joint team project exercises

crossing between the two classes and tying the two classes together. These projects required the

students to apply concepts taught in each class by developing an interactive system (details of the

system described in Section 6.3.2). The objective of the project was to simulate a real-world

team- or role-oriented setting for the development of interactive systems.

www.manaraa.com

 100

6.3.1 Class setup and team distribution
As shown in Table 4, we had a total of eight teams. Five of these eight project teams included

students from each class to represent a real-world scenario of software and usability engineers

working as a team to build an interactive software system. One of these teams (Team C) was

composed of dual-experts, i.e. students who were enrolled in both classes. These students had to

play both roles as dictated by the project deliverables in each of the two courses. In the case of

the rest of the four joint teams, each member played a distinct role: usability engineer if the

student was enrolled in the UE class and software engineer if the student was enrolled in the SE

class. Thus, each joint team had distinct SE and UE sub-teams.

In two teams (A1 and A2) the two sub-teams were introduced to one another at the start of the

semester. These two teams represented an ideal condition where the SE and UE role

communicated throughout the process (and using a manual instance of the RIF). They received

help from the Ripple instance in the form of periodic emails to foster communication for

synchronization, coordination, and constraint and dependency checks between the SE and UE

processes and work products. Whereas, for the two other joint teams (B1 and B2), the sub-teams

were not introduced to their counterpart teams until after the design phase was completed (two

thirds of the way into the semester). This condition represented a common real-world scenario

where usability engineers are introduced into the software development very late in the process.

These two B teams (B1 and B2) did not receive any communication support from the Ripple

instance. In all joint-teams, the UE sub-team developed high-fidelity prototypes of the UI and

released them to the SE sub-team for implementation and integration into the functional core.

The three D teams were comprised of only UE students. These teams represented a scenario

prevalent in some real-world situations where the UI design and development is contracted to a

separate group or company. The UI specification from such a group is then implemented by a

different team of software engineers (in house or elsewhere).

Students from SE and UE classes were asked to complete an SE and UE demographics

questionnaire respectively on the first day of the semester (shown in Appendix A and Appendix

B). These questionnaires addressed questions about educational and professional backgrounds,

writing and software programming abilities, etc. of the students. Based on the responses on these

www.manaraa.com

 101

questionnaires, teams were created to ensure balanced skill-sets to the greatest extent possible.

There was one exception to this team balancing attempt as discussed in Section 6.4.5.

6.3.2 Project objectives and deliverables
The team projects focused on developing an interactive system (or prototype in the case of D

teams) including both user interface and backend functionality. Semester-long projects were used

to build a real-world software system to facilitate the annual plant sale of the Horticulture Club

of Virginia Tech. Three student members (two of them officers) of the Horticulture Club were

trained to act as clients for all the teams. Special care was taken to prevent the client’s interaction

with one team from influencing their interaction with another team. The software platform, core

requirements, amount of time spent interacting with the clients, and amount of information about

the Horticulture Club were all pre-specified by us and all the same.

Each joint team (A, B and C teams) developed a fully functional software system to support the

annual spring plant sale for the Horticulture Club. This plant sale entails placing bulk orders with

a plant nursery, publicizing the event, managing inventory, and organizing the sale itself.

Currently the Club members do not have any tool support to perform most of the activities

involved in the plant sale. They do not have an efficient way to manage their inventories, know

the plants that are in demand, see sales trends over years, have an online presence to facilitate

requests by patrons for particular plants, and be able to make sales over the Internet. These were

the high-level requirements that the Horticulture Club had for a potential software system.

Therefore, the project topic for the student teams was to design and develop a fully functional

software system to facilitate their annual plant sale. The three main components for this system

included a web-based preorder system, an inventory control system, and a point-of-sale system.

The three D (UE-only) teams developed a high-fidelity prototype addressing all envisioned

functionality but without an actual functional core (the backend software).

The teams had a series of deliverables in each course throughout the semester. These

deliverables corresponded with the major phases and products of any normal software

development effort (including phases of interaction design development) such as the systems

analysis, requirements specifications, software design specifications, usability specifications, etc.

At the end of the semester the teams delivered the functioning system with code (in the case of

www.manaraa.com

 102

joint teams), high-fidelity user interface prototypes (in case of D teams), and other work artifacts

created during the development process.

We required members from all teams to maintain a design and development journal to log all

their meeting times, meeting minutes, activities undertaken in those meetings, composition of the

team during the meeting, issues or problems encountered, etc. More information about journals is

provided in Section 6.3.5.3.

6.3.3 Project clients
The client for this experiment was the Horticulture Club of Virginia Tech, a voluntary student-

run body which hosts many community-oriented service events. One of the primary activities of

this club is their annual plant sale, a three-day event that is hosted in late April each year. In the

following sections we describe the role of clients and how they interacted with the teams.

6.3.3.1 Recruitment, remuneration, and client performance
We contacted the Horticulture Club with a proposal to have the student teams build a software

system to help computerize the annual plant sale process. This proposal was met with interest

and enthusiasm. We recruited three members from the Horticulture Club to act as clients, and

paid a total of $1600 divided among them depending on the time and effort each of them

expended over the semester. In total, the clients spent approximately 210 person hours during the

span of the semester. The three clients performed exceptionally well and often went beyond the

call of their duty in accommodating the teams’ schedules and providing them with required

background materials on the plant sale and the Horticulture Club. Their enthusiasm and

dedication made the project experience better and the teams were excited at the prospect of

working with a real client. Interacting with the clients motivated most of the teams to work hard

and produce the best product so it would be selected by the clients for deployment. Unfortunately

due to the tragic incidents of April 16 on the Virginia Tech campus we were not able to deploy

the chosen system for use.

6.3.3.2 Risk, bias, and client role management
Initially we planned to have a different client group assigned to each pair of project teams. So, if

there are a total of eight teams, this would translate to having four client groups. In such a setup,

each client group would require at least two members to cover the role in case one of them drops

www.manaraa.com

 103

out of the study. Even with this kind of redundancy of client assignment, it would still be

significantly risky in that, if both clients in any one client team drop out, it would be difficult to

find another team of clients to take over that vacant position. Also, because of the fact that we

will be distributing available budget resources ($1600) among all client teams, each client will

receive only a small amount of compensation for their participation. This smaller compensation

usually translates to smaller commitment and reliability. Therefore, in order to manage the

amount of risk involved, we decided to have a single team of clients comprising of three

members who can each be compensated more.

Next we faced the question of the optimum size of the client group. The Horticulture Club had

many members, so we could spread the work over a large number of client representatives,

assigning different members to different teams. This, however, would introduce a bias factor

because not all members in the Horticulture Club were equally proficient with the full breadth of

the plant sale operation. Only a few members of the club had overall knowledge about the sale

and the various factors involved. The rest were usually assigned specific tasks pertaining to the

sale such as putting up advertisements, attaching price labels, etc. So having client teams with

club members without sufficient overall knowledge would have introduced inconsistencies and

potential biases into the requirements and other client inputs. This meant we needed to have a

smaller number of clients, with a focus on picking the most broadly knowledgeable from the

Horticulture Club.

In order to manage these risks and bias factors, we decided to have a single client team of three.

To prevent overloading this smaller number of clients, we had to carefully structure face-to-face

interaction sessions, rather than allow unlimited direct contact (a realistic constraint in many

real-world cases, anyway) with the teams. The clients were asked to give their available times

and an equal number of equal-length client meeting time slots were provided to the teams. This

way the clients’ interaction and overall workload were controlled.

6.3.3.3 Training and control on interaction with teams
Every meeting with each team throughout the semester was also carefully controlled to ensure

that there was no spillover of ideas or biases from one team to the other via the clients. The

clients were informed about the different conditions in the study, and were instructed not to use

www.manaraa.com

 104

knowledge or insights gained via interaction with one team while working with the others. For

example, before the start of the semester, the experimenter and the clients brainstormed to derive

a baseline high-level requirement set for the plant sale system and the clients were asked not to

deviate from that. The experimenter was present at every meeting the clients had with the teams

and at times when the clients were not sure on how to answer a team’s question without biasing

the study, a discussion was held outside the meeting room and the clients were instructed on how

to answer that question. Similarly after the initial requirements meetings with the teams where

the clients described the baseline requirements for the system, the clients were instructed to give

away additional information only when specifically asked by a team. For example, as part of

evaluation plan the experimenter (with the help of previous year’s officers from the Horticulture

Club) prepared a package of different documents and artifacts from the previous plant sale and

this package was given to those teams only if requested explicitly. A group email ID was created

to include the three clients and the experimenter and all teams were given access to it to ask any

questions or clarifications not resolved in these controlled face-to-face interactions. Once again,

the experimenter ensured that any information given by the clients through this channel was not

biased in any way.

6.3.4 Evaluation focus and specific hypotheses
In accordance to our research goals, this study had two high-level objectives:

1. Evaluate the effectiveness of a Ripple Implementation Framework instance that was created

to connect the SE and UE life cycles and explore how and in what way the various

communication factors impact the quality of product and process in an interactive-software

development environment, and

2. Evaluate the effectiveness of cross-pollinated SE-UE curricula by exploring the various

factors that impact the learnability of students in a joint SE-UE graduate course offering.

Based on these two high-level objectives, we had two over-arching hypotheses in this study:

1. Communication (among SE and UE roles) is the key factor that affects the quality of process

and product in an interactive-software development effort, and

www.manaraa.com

 105

2. Students taking cross-pollinated SE-UE curricula have a better learning experience than

those trained in SE-only or UE-only curricula.

More specifically, for this study the working hypotheses corresponding to these two overarching

hypotheses were:

H1.a) The C team will create better quality software and have a better development experience

than A teams because of the implicitly high level of communication and situational awareness

afforded to a team with dual experts;

H1.b) The A teams will perform better than B teams because of the amount of communication,

coordination, synchronization, and dependency checking afforded by the Ripple instance to A

teams and the fact that they were introduced to their counterpart teams at the start of the

semester;

H1.c) The B teams will perform better than D teams because B teams will have design ideas

brought together from two domains, albeit late in the process and without any outside help from

Ripple, whereas D teams will have a narrow user-interface-only design focus; and

H2) The students in this class will have a better learning experience as pertaining to learning the

intricacies of interactive-software development than compared to traditional SE-only or UE-only

curricula.

6.3.5 Evaluation metrics
As a part of developing the evaluation plan, we explored potential metrics to measure and

compare the various variables in this study. In this study we tailored quality metrics to suit the

constraints of evaluation in a classroom setting. We used product-based quality metrics such as

complexity and conformity (to software requirements) for the SE component and various

usability product metrics for the UE component. On the process side, we used measures of

subjective opinions of developers from both life cycles and the actual amounts of

communication, coordination, constraint and dependency checking, synchronization, and change

management as supported by an instance of the Ripple Implementation Framework. In the

following sections we discuss the background, our approach, and our metrics.

www.manaraa.com

 106

6.3.5.1 Background on evaluation metrics
Surveying the literature, one finds that software metrics are often categorized by various factors

and methods used. For example, Herbsleb and Grinter (1998) report a case study where they

used what they call “end-to-end” metrics which focus “on the overall software process.” They

contrast these metrics to more detailed ones that focus “on individual phases of development.”

Their so called metrics refer to function points to represent software size, effort in staff months

to represent size (to indirectly show productivity), cycle time of development (from start of

project to market release), and high severity defects identified in the software for the first half-

year after release.

Another classification is provided by Basili, Briand, and Melo (1994) in which software metrics

are either static or history. Static metrics are a measure of the complexity of software code at a

given point in time whereas history metrics are supposed to provide a measure complexity over a

given period of time. Another classification is provided by Sheppard (1988; 1992) where the

quantitative aspects of software engineering are divided into code metrics (e.g., lines of code),

design metrics (e.g., inter- and intra- module measures), and specification metrics (e.g., function

points).

Cook, Votta, and Wolf (1994) present software metrics to analyze a development effort using

data from past projects in an organization. In their case study they refer to three types of metrics:

product-based, process-based, and process-behavior-based. They use the number of “source lines

changed” and “source files changed” to represent product-based metrics; total time of the

development process execution, “internal delay time,” and the “developer who was involved” in

the project to be process-based metrics; and the similarity of the development process execution

to the process model to be process-behavior-based metric.

Similarly Fenton and Neil, in their widely cited paper (2000), provide a somewhat different

classification of software metrics. According to them, software metrics are classified into

product-based, process-based, and resource-based entities, each with two main attributes:

internal and external. The product-based metrics cover aspects pertaining to specifications,

designs, code, test data, etc. The process-based metrics cover constructing specifications,

detailed designs, testing, etc. And finally the resource-based metrics deal with personnel, teams,

www.manaraa.com

 107

organizations, software, hardware, offices, etc. Each of these three main categories is stated to

further have internal and external attributes. For example, the product-based metric associated to

specifications has the internal attributes of size, reuse, modularity, redundancy, functionality,

syntactic correctness, etc. and external attributes of comprehensibility, maintainability, etc.

Similarly, the process-based metric associated with testing has the internal attributes of time,

effort, number of coding faults found, etc. and the external attributes of cost, cost-effectiveness,

stability, etc. Interestingly, the authors list “software” to be a resource-based metric with the

internal attributes of price, size, etc. and the external attributes of usability, reliability, etc.

In addition, some software metrics are somewhat of a hybrid of the categories mentioned above

(Duncan, 1988) and some use a widely different set of measures (Atkinson, et al., 1998). In spite

of the variety of attempts to use, define, and develop metrics and measurement instruments as

described above, there have been little to no evaluations of most of these existing methods

(Emam, Moukheiber and Madhavji, 1993; Basili, Briand and Melo, 1996). Worse, there is little

awareness about this area of software metrics in software engineering (Fenton and Neil, 2000).

In our review of the literature, we found significant inconsistencies among the various

classifications provided by various researchers and practitioners. The most used categorization

that is somewhat consistent across most of the classifications seems to put software metrics into

two broad types: product-based metrics and process metrics (Li, Dec 1999-Jan 2000).

Product-based metrics often try to determine the various aspects of a software system using the

attributes of a product. Li defines these product-based metrics as the “measures of the software

products” and cites source code and design documents as examples of this type of metrics (Li,

Dec 1999-Jan 2000). One widely and historically used example for a product-based metric of

source code is the total lines-of-code (LOC) of the software. This metric lost favor with the

increasing diversity of the programming languages in the mid-1970s (the LOC of piece of

software written in an assembly language could no longer be compared with that written in a

higher-level language). This resulted in a new set of metrics that were a step closer to describing

the complexity of the software. An example of this later time’s product-based metrics is function

points (with the assumption that functions are independent of the programming language)

(Fenton and Neil, 2000).

www.manaraa.com

 108

With the advent of the object-oriented design paradigm and the dependence on inheritance,

different set of product metrics emerged as the traditional attributes were no longer appropriate.

For example, should one count the lines describing the attributes of a class towards LOC?

Similarly, should one count the methods in a child-class towards function point counts if these

methods are overwritten (Henderson-Sellers, 1999)? Examples of the new object-oriented

product metrics included the depth of a class inheritance tree, number of children of a class

(Chidamber and Kemerer, 1994), a class impact on superclass, class reusability, package size

(Purao and Vaishnavi, 2003), etc.

We believe product metrics such as these are mostly valid across multiple projects (if at all) and

are highly variable. Moreover, we believe these metrics are not directly representative of the

quality of the product because of the lack of causality. For example, Fenton and Neil give an

analogy and analyze the statement: “Data on car accidents in both the US and the UK reveal that

January and February are the months when the fewest fatalities occur.” They discuss how a naïve

regression model based on this statement would predict that it is safest to drive when the weather

is coldest and the roads are most treacherous. This conclusion is sensible based on the available

data in the statement even though intuition reasons otherwise. The problem with this analysis is

that the causality of this conclusion is weak to nonexistent. The authors argue that a more

accurate analysis should take into account the facts that during these months there are fewer

people driving and the fact that they drive much slower because of the inclement weather that is

common in these periods (Fenton and Neil, 2000).

The authors argue that this driving analysis is analogous to the use of product-based metrics such

as LOC or function points which appear to correlate but lack causality. For example a project

with more function points does not necessarily indicate better quality than one with fewer

function points even though they are created to solve the same problem. One should take a more

rigorous approach towards measurement to have high causality between the measures and

conclusions. Slightly higher-level metrics such as usability, reliability, maintainability, etc. are

more representative of the quality of the software because these metrics are a composite of sub-

attributes (for example, a usability metric includes quantitative metrics such as time on task,

number of errors, etc. and qualitative metrics such as participant opinions). In either case, we

acknowledge that in principle, the quality of a product is the true measure of the effectiveness of

www.manaraa.com

 109

the development process (Emam, Moukheiber and Madhavji, 1993). However, given the

constraints of a semester and the available evaluation options, such a causally-valid product-

based measurement was not possible.

The most widely used process metric in the literature appears to be the amount of resources

expended during the development life cycle (Widmaier, Smidts and Huang, 2000; Li, Dec 1999-

Jan 2000). One example of a process metric is the total number of person hours spent during the

development effort (Duncan, 1988; Tate and Verner, 1991). Use of such a metric is possible in

an industry setting because of the somewhat fixed hours of work per week. In an industry setting

one can observe and record the number of hours a particular team spends on a project by using

time cards for the hours clocked, etc. Even in professional settings where time-cards are not

used, self-reporting would have checks and balances. For example, the total hours reported

would have to be equal to the number of hours worked for the week. One cannot use a similar

strategy in an academic setting because it is not possible to clock the students’ hours. Each team

potentially has six students with widely varying schedules and timetables. Students do not have

fixed hours where they can be monitored to measure the amount of person hours they spent on

the project. They may meet late in the evening to accommodate the different schedules of the

team members. Self reporting of the hours spent by the students was the only option, and that

was what we adopted.

Another important issue that prevents the use of these commonly used metrics as reported in the

literature has to do with the need for steady state measures. Most of the product metrics are

useful only when they are taken over time across multiple projects. If it were possible to offer the

joint course twice, one with Ripple and one without, it would be possible to eliminate the

confounding factors resulting due to the interactions the two sets of teams have in a single class.

Also, the first time these measures are taken there is a high probability of confounds and biases

because of the intrusion of the measuring instruments into the work activities of the project

(Cook, Votta and Wolf, 1998). A steady state measurement was not possible in our evaluation

because of the one time opportunity to offer joint SE and UE courses. Moreover, because of the

learning setting the projects had some make-believe assumptions when it came to benchmark

tasks, and performance specifications. This prevented any rigorous comparisons across products.

www.manaraa.com

 110

In light of the unsuitability of traditional software metrics for evaluating our work, we looked at

other kinds of measures that can be adopted. One such measure is the level and amount of

communication between team members as proposed by Bruegge and Dutoit (1997). In their work

they provide evidence that “metrics on communication artifacts generated by groupware tools

can be used to gain significant insight into the development process that produced them.” In

other words, the amount of communication could be a direct measure of the quality of the

software being developed. The authors studied a set of projects and found that the electronic

traffic generated by email and other groupware artifacts was representative of the level of overall

communication in that project. Inspired by that work, we adopted a similar set of measures for

this evaluation. Apart from the subjective reporting by the team members and the clients, we

gathered objective measures of the amount of communication in the form of emails sent among

the various conditions’ team members indicating different types of communication and adopted

those to be a direct representation of the quality of the software development process.

In order to accomplish this, we used an “empirically guided process” as described by Selby et al

(1991), using a software process that included measuring instruments. An empirically guided

process is based on the underlying principle that one should make measurement “active” by

integrating measurement instruments into the development process. This contrasts with the

passive use of measurement instruments where the measurements are obtained after the

development effort is completed (Cook, Votta and Wolf, 1998). In our study we collected data

from periodic deliverables each team submitted as per the course schedule and we required

students to maintain artifacts such as journals as the semester progressed. We periodically

checked these artifacts to make sure they were up to date.

6.3.5.2 Approach to deriving metrics
One cannot evaluate effectiveness of a framework such as Ripple using direct measures, but only

in terms of indirect measures, effectiveness indicators, which are measures expressed in terms of

other attributes. However, “utility is in the eye of the beholder” and one must choose a particular

measure only if it helps understand “the underlying process or one of its resultant products”

(Fenton and Pfleeger, 1997). Also, one needs to include both objective and subjective measures

to gather a broad understanding of the process and product (Dix, et al., 2004). Fenton and

Pfleeger go on to say that one can evaluate improvements in a process and its resulting products

www.manaraa.com

 111

only when the evaluation has a clearly defined set of goals in relation to the process and

products, set within the Goal-Question-Metric (GQM) paradigm (Basili and Weiss, 1984; Basili

and Rombach, 1988) for selecting and implementing metrics. In this paradigm one should first

postulate the goals of evaluation and derive questions, the answers to which will indicate if the

goals are met. Each of those questions is then analyzed in order to determine the measurements

that are necessary to answer the question (Fenton and Pfleeger, 1997). Fenton and Pfleeger

illustrate with an example of evaluating the effectiveness of a coding standard, which they show

in their Figure 3.2, adapted here to Figure 23:

GOAL QUESTIONS METRICS

Who is using standard?

-percentage of coders User of standard

Coders experience with standard

Coder’s experience with standard

Size of code

-LOC

-Depth of inheritance tree(in OO)

Productivity of coder

Person hours expended

Size of code

-LOC

-Depth of inheritance tree(in OO)

Coding standard
effectiveness evaluation

Quality of code

Bug density

Figure 23: Example of deriving metrics from goals (adapted from Figure 3.2 in (Fenton and Pfleeger, 1997))

We used this approach to derive our metrics. Therefore, starting with goal one of this study,

which pertained to the Ripple implementation instance:

Evaluate the effectiveness of the Ripple framework, as embodied in a specific implementation

instance, to facilitate communication among developers within and between the two life cycles.

High-level questions, Q1 and Q2, can be derived from the goal:

www.manaraa.com

 112

Q1. At the highest level, what are the indicators appropriate to reflect effectiveness of

framework?

Q2. To what end and in what ways is communication used in the Ripple framework?

Since an effective framework should result in better quality of process and resulting product,

question Q1 can be answered as:

A1. The quality of product and process.

And, since communication in Ripple is used to facilitate various other factors, question Q2 can

be answered as:

A2. Communication, the main contribution of the Ripple framework, is used to facilitate

coordination, synchronization, constraint and dependency checking, and change management.

Now, one can ask, in questions Q3 and Q4, what measures are needed to provide these answers:

Q3. What are the potential product quality indicators?

Q4. What are the potential process quality indicators?

Each of these questions can be answered with a list of indicators:

A3. Usability (objective and subjective), completeness of requirements and design specification

documents (objective and subjective), amount of unexpected changes (objective and subjective),

number of defects (objective only), and code size (objective and subjective)

and

A4. Resources expended (objective and subjective), perceptions of developers (subjective only),

how well the communication factors from A2 above played a role (subjective only), and number

and type of messages sent (objective only).

Expanding A3 to specific measures, we get:

A3. Usability: time on task, satisfaction, number of errors

www.manaraa.com

 113

Completeness (with respect to backend and UI coverage) of requirements and design

specification documents: expert evaluation and developer perceptions

Amount of changes: number of unplanned/unexpected changes as documented in journals

maintained by students, developer perceptions on change handling and effects

Number of defects: GTA evaluation of project reports, students’ journal recordings of defects

resulting from SE and UE interaction

Code size: Lines of code, developer perceptions of size.

Expanding A4 to specific measures, we get:

A4. Resources expended: number of person hours recorded in student journals

Developer perceptions of the process: as assessed by standard questionnaires

Developer perceptions of effect of communication factors from A2: as assessed by standard

questionnaires

Number and type of messages sent between and among groups: analysis of email messages

As a way of summarizing this discussion, the counterpart to the diagram of Figure 23 for the

Ripple framework is shown in Figure 24.

However, certain changes and adjustments had to be made to these metrics as a result of the

various constraints inherent in our study. For example, it was not possible to conduct a lab-based

usability evaluation of all teams’ products to arrive at measures such as time on task, number of

errors, and satisfaction. The reason for this is that three D teams developed high-fidelity

prototypes only and did not have a functional backend. Each of these prototypes were

constructed to simulate carefully scripted benchmark tasks only and therefore it was not possible

to run the same set of tasks in a lab-setting across all teams. Therefore we adopted a similar

metric called overall product comparison (described in Section 6.3.5.3). Similarly it was not

possible to compare code size and complexity using objective measure because the D teams had

www.manaraa.com

 114

no functional core. Also, in the five joint teams that created fully functional systems, they

adopted different technologies ranging from AJAX to JSP, making it impossible to compare for

code-based metrics.

Figure 24: GQM framework applied to Ripple framework

6.3.5.3 Evaluation instruments and metrics
Using the approach described above, we derived the following evaluation instruments and

associated metrics:

www.manaraa.com

 115

Overall product comparison
At the end of the semester, we conducted an eight-hour meeting in which, the experimenter and

all three clients analyzed the prototypes for breadth of functionality covered by the UI, usability,

and appropriateness for the Horticulture Club’s goals. Each team’s final system was analyzed in

detail to arrive at an overall value index per team. First, we compiled an exhaustive “union” list

of all features across all teams (e.g. ability to search by common name, ability to view shopping

cart at all time, feature to provide directions to plant sale, etc.). Each of these features was then

ranked on a desirability scale, which indicated how important this feature was for the clients’

plant sale. The scale included a range of low, medium, high with fractional values in between in

some cases. In other words this analysis provided a super set of all features with each feature’s

desirability present in all systems combined.

After this desirability analysis, the clients also rated each feature on each team’s product on

perceived quality. Starting from team A1, they analyzed each feature in each system and rated it

on a perceived quality scale that included a range of poor, fair, good with fractional values in

between in some cases. On a matrix, each feature on the union list was marked with a one or zero

to indicate its presence or absence respectively, combined with the ratings for desirability and

perceived quality. A product of these three values (feature present/absent, desirability rating, and

perceived quality rating) was computed to arrive at a value index per feature. This value index

per feature was aggregated to calculate the total value index per team project. Similarly, an

aggregate feature count per team was also computed. These two values per team were treated as

metrics for the study.

Journal analysis
As mentioned previously, as part of this study we required all students in both classes to

maintain an online journal in the form of a spreadsheet to record individual and group hours

spent working on the project, problems encountered, strategies used, negotiations held, overall

impressions of the process, and other project-related details. This spreadsheet-journal was

structured with the following sheets and fields:

1. Individual hours sheet

a. date entry,

www.manaraa.com

 116

b. number of hours spent working individually on the project, and

c. description of the work done;

2. Group hours sheet

a. date entry,

b. number of group hours spent,

c. the attendance at that group meeting, and

d. description of the work done;

3. Unexpected changes sheet

a. date in which an unexpected change, if any, occurred

b. brief description of change,

c. cause of change,

d. any resolution reached, and

e. additional comments;

4. Issues with SE-UE interaction sheet

a. date in which an unexpected change, if any, occurred

b. brief description of change,

c. cause of change,

d. any resolution reached, and

e. additional comments;

5. Other experiences sheet

a. date entry,

b. experience, and

c. any insight gained.

Using these journal entries, we computed the total individual and group hours per team. We used

these as metrics for resources expended, and other data from the remaining sheets was used as

subjective developer perceptions.

Email analysis
In order to measure the amount and nature of communication that transpired among the various

members in each team, all teams (and in the case of joint teams each sub-team) were provided

with custom group email IDs in which the experimenter was a silent member. The joint teams

www.manaraa.com

 117

each had three email IDs: one for the SE group, one for the UE group, and one for the combined

group. The students were required to use these group email IDs for all project-related

communication (and only for project-related communication) during the semester. The entire

collection of email exchanged among all groups throughout the semester was archived and

analyzed. Each email was tagged with various keywords (described in the next chapter). The

total number of emails, the frequencies of keywords, and some subjective analysis were used as

metrics.

Transcripts of end-of-semester symposium
As described in our pedagogical research objectives, it was essential for each team to share their

perceptions of problems inherent in the development style they were assigned, the strategies they

used to overcome these problems, lessons learned as part of their experience, and based on these

experiences, any advice they have for real-world software developers. In order to facilitate this

sharing of knowledge we hosted a research symposium at the end of the semester in which each

team presented the key findings from their project experience. This symposium was recorded

(audio and video) and the content transcribed (text files). Components of this data from the

transcripts were used as metrics for the study.

Group interviews
At the end of the semester (after the symposium) each team was individually interviewed for an

hour and a half. The interview was semi-structured with general questions probing the challenges

faced, how prior work or academic experience in each role affected their performance in the

study, how their interaction with the counterpart team affected their experience, what style of

development they preferred, and other impromptu questions resulting from their answers. The

interviews were recorded (audio only) and transcribed. Various parts of the data from these

transcripts were used as metrics for the study.

Surveys
At the end of the group interviews, each student was administered two surveys: one with 55

questions gauging their perceptions on a wide variety of aspects of the study and another with 22

questions gauging their perceptions on various pedagogical aspects of the joint offering of SE

and UE courses. The answers to these surveys were used as metrics for the study.

www.manaraa.com

 118

Subjective feedback from clients
After each interaction the clients had with a team (for example after their requirements analysis

meetings, formative evaluation meetings, etc.) and after the end-of-semester product comparison

meeting, the clients were asked if they had any general impressions on the team’s performance in

that meeting or their overall impression on the team’s system. The feedback from clients in these

situations were recorded and used as metrics.

6.4 Confounding factors and other issues
The academic setting chosen for evaluating our work had the potential for some inherent

problems and issues. We list and discuss the salient ones here.

6.4.1 Conflict of ethical and research objectives
The key confounding factor in this study was the conflict between the teaching duties of the

instructors of the two classes and scientific protocol to observe the teams without intervention.

For example, when a team’s performance (as perceived via the quality of work products they

delivered) deteriorated, should we correct them or should we observe their performance without

intervention? From the conception stage for this study, we have decided that the students’

learning objectives would take precedence over any of the other factors. Therefore each team, in

effect, followed a self-correcting process wherein they received constant feedback from the

instructor and GTA on how to improve their performance. This was a significant confounding

factor in the study, and worked against a divergence of quality across the team projects over time

and a consequential loss of data about variations in performance across the teams.

6.4.2 Experimenter analyzing all data from the study
Due to budget, time, and the complex nature of the study, it was not possible to hire and train

external coders to analyze data collected in the study. All data analyses in the study were

conducted by the experimenter (except overall product comparison discussed in Section 7.2.1)

and potentially subjected to evaluator biases. However, great care was taken to minimize this

bias. For example, for email analysis (Section 7.2.3), the procedure was repeated twice to help

ensure there were no errors. Similarly, for the group-hours portion of the journal analysis

(Section 7.2.2), each student’s entries were compared with the other members’ entries to

minimize reporting errors.

www.manaraa.com

 119

6.4.3 Unequal enrollment numbers in the two classes
Due to scheduling and other factors the two classes had an unequal number of enrollments. The

SE class had an initial strength of 17 students, from which two students dropped the class in the

first two weeks of the semester. The UE class, on the other hand had 33 students with no drops.

Three of these students were enrolled in both classes. This variance in enrollment raised issues

about the team compositions, forcing us to have UE teams with more numbers than their SE

counterparts. This is somewhat in contradiction with the real-world development teams where

usually SE numbers far exceed the UE roles. Also, we had just one team for the dual experts’

condition due to the fact that there were only three members enrolled in both classes. This

provided us an opportunity, albeit a statistically insignificant one, to see what role expertise in

both domains played in influencing the dependent variables.

6.4.4 Experimenter being a GTA for one of the courses
Another potentially confounding factor is the fact that the experimenter was the GTA for the UE

course. Since the experimenter has been a student of the CS department for a significant amount

of time and many students knew about the work and the experiment prior to the evaluation, it

was not possible to prevent the students from knowing about the experimenter’s vested interest

in the study. Therefore, it is possible that the Hawthorne effect (Parsons, 1974) was at play and it

biased their ratings.

6.4.5 Team balancing issues
Due to the unexpected imbalance in the class enrollments of the two classes, not only did we

have problems with team size as discussed above, we also had issues with team balance. Based

on our past experience we anticipated about four students to drop from the UE class and

therefore had a team of “reserve” students in one of the D teams who could each be reassigned

based on other students dropping the class. However, no one in the class dropped, resulting in an

unbalanced team (did not have equal skills for programming, prior background, etc.).

Another issue with team distribution stemmed from the broad range of prior background and

experience in SE or UE students had from previous courses or industry experience in these areas.

Specific cases where this experience played a role in the study will be discussed in the next

chapter.

www.manaraa.com

 120

Also, since we were planning on evaluating the subjective perceptions of the students about

aspects such as communication, coordination, synchronization, constraint and dependency

checks, and anticipation and reaction to change, the relations between various team members

potentially played an important role. It was important that the team members not cloud their

ratings based on prior relationships and common ground with the other members of the teams. In

other words, a student who has team members from the same research group or lab might have a

different style of communication and interaction because of the common ground and social

history. However, there were only a couple of teams which had such prior personal or working

relationships and potential impacts on the study will be discussed in the next chapter.

6.4.6 Other issues
Apart from the above stated potential biases, there are other ones such as the fact that the

students are working for a grade and will therefore go beyond any framework (Ripple or non-

Ripple) to perform well on the projects. Also, this classroom project will be a finite, easily

controllable, simulated project compared to the real-world projects where there is a possibility

that the project might become intractable or go over budget and schedule. Another potential bias

is due to the presence of measuring instruments that the students must use. As Cook, Votta, and

Wolf states: measuring instrumentation in a software process “can be intrusive and expensive”

and one encounters “resistance to the extra workload” because of the additional activities the

developers should do to help in the measurement. This they say “often foils the study before it

begins” (Cook, Votta and Wolf, 1998).

6.5 Constraints and Limitations
The joint course offering and project requirements imposed certain overheads for this evaluation.

One such dominant issue was scheduling. Scheduling team meetings between the students across

the two classes, as well as meeting the clients as a team imposed significant overheads on the

part of the students. In addition to the scheduling overheads, there was an additional project

phase for integration of the functional core and the UE for all five joint teams in this project.

This extra burden is not usually present in the regular offerings of the SE and UE courses.

Finally, we faced uncertainties in the measuring instruments employed in the study because, we

did not have an opportunity to test them in the same scale and scope of use as were used in the

evaluation prior to starting the study.

www.manaraa.com

 121

In light of all the potential biases and factors inherent in an evaluation in an academic setting,

there were probably some factors that confounded internal validity. However, aiming for external

validity, this setup was probably the best one possible in the given circumstances.

6.6 Summary of Evaluation Plan
The Ripple Implementation Instance was evaluated in a quasi-experimental classroom-based

setting. Teams of students were formed from the SE and UE course sections to simulate the

usability engineer and software engineer roles. The teams worked within the constraints of the

semester and attempted to develop an interactive system to facilitate the annual plant sale for the

Horticulture Club of Virginia Tech. The independent variables for the study included domain of

expertise (SE, UE, and SE+UE) and development style. The dependent variables included factors

of communication, factors for education in the context of a cross-pollinated SE-UE curriculum,

and other project management factors. As part of this study, we required all students to maintain

a journal to record individual and group hours spent working on the project, problems

encountered, strategies used, negotiations held, overall impressions of the process, and other

project-related details. All the teams and sub-teams were provided with custom group email IDs

and were mandated to be used for all project-related communication. All this email from the

entire semester was archived in a secure machine. We also had an end-of-semester joint SE-UE

symposium where each team presented project experiences, lessons learned, advice to real-world

developers, etc. After the symposium each team was individually interviewed for an hour and

then administered a 55 question survey. The symposium and individual team interviews were

recorded. Also, the instructors and GTAs graded each of the project phases and these grades

were used as a secondary measure. Due to the academic setting and its inherent constraints and

limitations, there was a possibility of significant biases and confounds. However, this was the

best possible setup given the resources.

www.manaraa.com

 122

7 Chapter Seven: Analysis and Results

7.1 An Investigative Approach to Analysis
As described in Section 6.3.5.3, we adopted a series of measuring instruments to investigate the

effectiveness of the Ripple Implementation Instance and to explore the various communication

and pedagogical factors that could potentially impact interactive-software development. Each of

these instruments provided a unique insight into the investigation of each team’s performance

and to the general understanding of the different factors that seem to influence the quality of

interactive-software development. However, no single instrument, by itself, provided irrefutable

evidence to explain beyond reasonable doubt the various factors that were at play in this

exploratory study. Using an analogy of the criminal justice system, combinations of factors,

ranging from objective to subjective and from qualitative to quantitative, needed to be pieced

together to determine our understanding of what happened with each team in the study. In the

process of reconstructing this picture, we identified some expected and some unexpected factors

which could influence the quality of undertaking, or teaching about, an interactive-software

development endeavor. However, these results should be read in light of the various confounding

factors (discussed in Section 6.4) that could have influenced the study in one way or the other.

7.2 Analysis Procedures and Issues
In this section we elaborate on the procedure used with each of the measuring instruments to

derive the associated data and the issues encountered in that regard.

7.2.1 Overall product comparison
As described in Section 6.3.5.3 the clients rated each feature in the product system from each

team on a desirability scale (low, medium, high) and on the perceived quality of that feature

(poor, fair, good). In case there were disagreements among the three clients about the appropriate

rating for any feature, they were asked to discuss their disagreements and arrive at a consensus

value for each feature. Figure 25 shows a sample of this analysis. The value of attribute “feature

present” indicates whether that feature was present in each particular product system, was used

accordingly as a binary “switch” to include a particular feature or not in the calculation of the

value index. As an overall indicator of both desirability and perceived quality we used the

www.manaraa.com

 123

product of these two values and called it the value index of that feature. Because it is a product, a

high value index requires both desirability and quality to be high. If either is rated low, the

product will be correspondingly low.

Figure 25: Sample data from overall feature comparison analysis

The following numeric values were used to calculate the value index per feature (product of

feature present, desirability of that feature, and perceived quality):

Feature present Feature desirability Perceived feature quality
Yes = 1
No = 0

High = 3
Medium = 2
Low = 1

Good = 3
Fair = 2
Poor = 1

Table 5: Numeric values used to calculate value index

One of the issues faced in comparing the value of the systems developed by the different teams

in the study was their dissimilarity in terms of the “realness” of the systems. For example, the

three D teams created systems without a real backend (i.e. user interface only). Therefore, the

value index for D team systems are more perceived quality attributes than real ones. However,

we believe this value index still serves as a basis of comparison on a per-role system quality, i.e.,

within sets of teams that used the same development condition. For example, the non-D teams

had joint teams (or had two trained roles in the case of C team) to create a system with two

components: UI and backend. The D team had only the UE role and created a UI-only prototype.

www.manaraa.com

 124

Another issue with this instrument is the fact that it does not provide an insight into the

contribution of each sub-team in the case of A, B, and C teams. For example, a low value index

indicates a failure on the part of the entire team but does not describe if the failure was due to a

low-quality contributed by the UE sub-team or the SE sub-team.

Similarly, another potential problem with this index is the fact that it is not tolerant to distortion

due to feature creep. For example a team could accrue a high value index if its system has fewer

core (essential) requirements but a large number of non-essential requirements, which would

probably never be used by the client. This problem has the potential to be more pronounced in

the second metric derived from this instrument: feature count per system. However, to our

knowledge, this was not a severe problem in this analysis.

7.2.2 Journal analysis
As described in Section 6.3.5.3 all the students in the study were required to maintain an online

journal in the form of an electronic spreadsheet that was periodically checked by the

experimenter. However, certain students were not good at keeping their journals up-to-date in

spite of repeated reminders. Worse, it appears that some students concocted fictitious meeting

times and hours just to adhere to the requirements of keeping the journal. There was also some

resentment as evident in their journal entries about the extra work required to maintain the

journal. These aspects are described in later sections of this chapter. Here we focus on the

procedure used to minimize the reporting error to the greatest extent possible.

Of all the entries in the spreadsheet (individual hours spent, group hours spent, unexpected

changes, issues with SE-UE interaction, and other experiences), the measure that was most

susceptible to problems of incorrect or incomplete reporting were the person hours spent

working on the project. This is because inaccuracies in reporting of this data, even by one or two

members in a team, leads to an inaccuracy in the entire team’s data. Whereas, not reporting

unexpected changes or other experiences, at worst, fails to provide a full picture of what

happened, but does not distort the data of the entire team. Therefore a lot of effort was put into

making sure the effects of errors with respect to hours worked as reported in the journals were

minimized.

www.manaraa.com

 125

There was not much that could be done with the reporting of individual hours because those data

points could not be correlated with any other data points. However, for the group hours, it was

possible to reconstruct the exact meeting times, duration, and attendance by piecing together the

entries from all the team members’ journals. For example, if a meeting was reported to have

taken place at a certain time for a certain length and attended by a certain number of team

members, it was possible to detect differences (and often to deduce the correct values) by

looking at each of the reporting member’s entries. The meeting times were also cross-checked

with their email exchanges in some cases to ensure their accuracy. Using such thorough, but

often tedious, reconstruction it was possible to ascertain, with a reasonable degree of certainty,

the exact number of people who attended a group meeting and the duration of the meeting. By

reconstructing the teams’ group meeting hours it was possible to compute the total person-hours

spent by each sub-team and joint-team for the entire duration of the semester. Also, using this

reconstruction, it was possible to exclude hours spent working on non-project related activities

(for example, working on homework assignments that were not part of the group projects).

As for the qualitative data in the journals (unexpected changes, issues with SE-UE interaction,

and other experiences), we analyzed each entry in each developer’s sheet and used that

information as evidence to investigate and reconstruct what happened in this exploratory study.

This instrument proved to be an important source of information in the investigation of how the

teams performed and aided in identifying a list of factors that seem to play a role in the

interactive-software development space.

7.2.3 Email analysis
As described in Section 6.3.5.3 all the students in the study were required to use, for all

communication about the project, group email IDs provided to them by the experimenter. Each A

and B team were assigned three group IDs: one for the SE sub-team, one for UE sub-team, and

one for the combined SE-UE team. The C and D teams were each assigned one group ID. The

experimenter was a silent member in all the groups and archived all messages sent via all group

IDs. There were a total of about 5300 emails that were sent over the semester by all the teams.

For analysis, these emails were grouped by team first and then by component sub-teams in the

case of A and B teams. The experimenter then analyzed each of these emails and tagged each

with a keyword per unit of communication. We define a unit of communication as one complete

www.manaraa.com

 126

idea that was expressed in a message. For example, in a message informing that there is need to

discuss project deliverable two and that the sender is available to meet on Friday at 3.00PM,

there are two units of communication: one unit “planning and execution” and one unit of

“scheduling”.

The Mail program on a Macintosh computer was used to archive the emails. A tagging plug-in

called MailTags 2.0 (MailTags, 2007) was used to tag the emails. Because this tagging plug-in

does not allow for multiple occurrences of a particular keyword for the same message, multiple

keywords representing occurrence counts were created. For example, for the keyword “planning

and execution”, 13 instances were created (1- planning and execution, 2- planning and execution,

3- planning and execution, etc.) each representing the frequency of this keyword’s occurrence in

a message. This tagging exercise was conducted twice over the entire archive of email to account

for any errors or omissions.

Apart from the quantitative data such as frequency counts and amount of communication as

indicated by the aggregate of communication units across each team, the experimenter recorded

subjective observations of issues arising in the email content during the tagging process. These

were also used in the analysis process. This instrument proved to be an important source of

information in the investigation of how the teams performed and aided in identifying a list of

factors that seem to play a role in the interactive-software development space.

The keywords used in this tagging exercise are described here:

7.2.3.1 Ripple
This keyword was used to tag communication units related to the Ripple instance in the study.

Specifically any of the following types of messages were tagged with this keyword:

• Messages about managing the team's work product repository in the form of "Deliverables"

thread in the group email IDs,

• Messages about scheduling in the form of "Posting project activity plans" thread (messages

used to facilitate constraint messages for A teams), and

• Messages with introductions to counterpart teams by experimenter

www.manaraa.com

 127

7.2.3.2 Planning and execution
This keyword was used to tag all messages containing any of the following type of

communication units:

• Messages with introductions and exchange of contact information among team members at the

start of the project and after the counterpart teams were introduced

• Messages about project planning that are relevant for the functioning of the team and progress

of the project

• Communication with and about client relating to the project

• Preparation/planning for project deliverables (and project document attachments)

• Messages related to work product exchange among the group

• Discussion among group about incompatibilities with what was done by other members

• Requesting for feedback on work products

• Discussion of technical skills or lack thereof required for project

• Questions (and answers) about project scope directed to the experimenter (e.g. “should we

consider credit card accounts?”, “are we doing this right?”)

• Roles and project task division and assignment

• Messages in which a previously mentioned or discussed project-related proposal or idea was

acknowledged or agreed upon

• Messages in which ideas related to project planning, execution, etc. (but not scheduling

locations, times, etc., which was included in scheduling keyword described in Section 7.2.3.6)

were put forward

• Messages in which a previous project-related proposal/idea was disagreed upon

www.manaraa.com

 128

• Messages in which there was further discussion about agreement or disagreement about a

proposal/idea

• Messages in which there was a follow-up to a question without agreement or disagreement

(e.g. I don’t think we decided the meeting place yet)

7.2.3.3 Strategies
This keyword was used to tag communication units related to strategies for and approaches to

structuring, planning, and about adopting creative techniques for project execution (e.g. adopting

separate email threads for different types of project communication, creating a group calendar to

ease scheduling problems, etc.)

7.2.3.4 General communication
This keyword was used to tag instances of messages dealing with communication other than that

related to the project. Specifically:

• Technology discussions/advice to team members (e.g. “Microsoft Visio is better than Word for

images”)

• Personal issues of team members not related to project (e.g. “I will be late to the meeting

because I need to pick up my kids from soccer practice”)

• Communication slips (e.g. “Oops! forgot the attachment, here it is”)

• All other issues that have an indirect effect on the project and team but not specifically related

to the content of the project (e.g. “I will be going to a conference next month so I need to get

my part of project deliverable before I leave”).

7.2.3.5 Administration
This keyword was used to tag communication units related to class administration and

management (e.g. project due dates changed, homework submission instructions)

7.2.3.6 Scheduling
This keyword was used to tag instances of messages dealing with scheduling and logistics issues.

Specifically:

www.manaraa.com

 129

• Communication about, and negotiation of, planning/availability for team/client/other meetings

• Requests for confirmation of meeting times and places

• Experimenter responses (where necessary) to these messages

7.2.3.7 Deliverables
This keyword was used to tag instances of communication units related to the mechanics of

upcoming deliverables but not about the project content itself. Specifically:

• Discussions on formatting, binder requirements, other logistics for deliverables

• Questions and responses (from team members and experimenter) about these issues

• Messages submitting deliverables

7.2.3.8 Emoticons
This keyword was used to tag messages with emoticons such as smiley faces, phrases, humor,

friendly salutations, greetings, etc. (e.g. “hope you all had a good weekend”, “I want to punch

someone”)

7.2.3.9 Affirmations
This keyword was used to tag short acknowledgments to questions/answers (e.g. “got it”,

“thanks”)

7.2.3.10 Team cohesion
This keyword was used to tag instances of messages illustrating the formulation of, or existence

of, good team relationships or cohesion (e.g. bonding, team unification). Specifically:

• Complimenting the team or team member's work, ideas, etc.

• Giving heads-up to team about future personal trips, leave of absence, other issues that might

affect team performance, and how they will compensate for these issues

• Volunteering for help other team members after one’s assigned work was done

• Providing feedback such as "sorry it took so long" and other related messages

www.manaraa.com

 130

• Wishing other team members good luck about outside engagements (e.g. “good luck on your

job interview”)

7.2.3.11 In-class activity
This keyword was used to tag messages pertaining to in-class activities and homework

assignments not part of the team project.

7.2.3.12 Credit card authorization and testing
Messages related to account setup and testing of the third party credit card authorization client

(Click & Pledge, 2007) that was setup by the experimenter for this study.

7.2.3.13 Counterpart-role specific
This keyword was used to tag messages where the interaction with counterpart role was

discussed (applied only to A and B teams). Specifically:

• Asking/assigning/delegating jobs to the counterpart role

• Preparing, anticipating, and planning for interaction with counterpart role

7.2.3.14 UE initiation
This keyword was used to tag messages that were initiated by the UE team to the SE role

(applied only to A and B teams).

7.2.3.15 SE initiation
This keyword was used to tag messages that were initiated by the SE team to the UE role

(applied only to A and B teams)

7.2.3.16 SE-UE interaction
This keyword was used to tag messages indicating communication between the two counterpart

roles. Specifically:

• Scheduling and introductions between the two roles

• Discussion of SE/UE issues

• Team C's discussion about counterpart role

www.manaraa.com

 131

7.2.3.17 Inter-role negotiation
This keyword was used to tag messages between the two roles related to issues, compromises,

and discussion related to working with the counterpart role. Specifically:

• Questions about feasibility and other issues between SE and UE roles

• SE/UE people responding with issues about other role

• Questions about what is needed by the other role and answers

• Discussion of timelines and schedules and constraints of one role on the other.

7.2.3.18 Team issues
This keyword was used by experimenter to tag instances of messages indicating problems with

teams. Specifically:

• Lack of response to emails or certain team members not pulling their weight

• Miscommunications resulting in negative messages

• Tone indicating lack of team cohesion

7.2.3.19 Repeat communication
This keyword was used to tag messages where communication that was previously discussed

was repeated because of lack of response or action from other team members.

7.2.3.20 Social
This keyword was used to tag messages where the team discussed social activities not related to

project or other class related issues.

7.2.3.21 Miscellaneous
This keyword was used to tag messages related to all other issues not covered by the keywords

above such as issues pertaining to re-sizing of teams because of students dropping or intervention

of instructors and experimenter to fix team problems.

www.manaraa.com

 132

7.2.4 End-of-semester symposium
As described in Section 6.3.5.3 each team was required to share their project experiences with

the class. This symposium, which lasted for four hours, was recorded (audio and video) and the

content transcribed (text files). Even though this transcription exercise took significant effort, it

provided rich data about what worked for each team and what challenges they faced. This

instrument provided an overview of the entire project as perceived by the teams.

7.2.5 Group interviews
As discussed in Section 6.3.5.3 each team was interviewed for an hour and a half at the end of

the semester. These semi-structured interviews were focused on probing specific aspects related

to each team and for following up on certain topics that teams brought up during the symposium.

The audio of these interviews was recorded and then transcribed. Once again, this was a tedious

and time consuming exercise, but one which yielded rich qualitative data about many aspects of

each team’s experiences.

7.2.6 Surveys
As mentioned in Section 6.3.5.3 at the end of the group interviews the experimenter administered

two surveys to each team member: one with 55 questions gauging their perceptions on a wide

variety of aspects of the study and another with 22 questions gauging their perceptions on

various pedagogical aspects of the joint offering of SE and UE courses. Due to IRB restrictions,

we were not able to collect any information identifying the team members in these surveys.

Therefore individual level comparisons were not possible across surveys and email data. Thus,

the surveys were aggregated to team level responses and analyzed. Also, all students were given

the same two surveys regardless of the development condition they used for their group project.

Therefore, for questions aimed at gauging their perceptions about other development conditions,

the students had to resort to conjecture based on their experience observing the other teams

throughout the semester and during the symposium presentation. For example, some questions in

the survey asked the students about their perceptions on the importance of having periodic

communication between SE and UE roles in an interactive-software development effort.

However, the D teams had no first hand knowledge with this issue as they did not have a

counterpart SE role.

www.manaraa.com

 133

7.2.7 Client feedback
As discussed in Section 6.3.5.3 after each interaction with the teams, the clients were asked to

provide general impressions on the team’s performance and their system. These were purely

subjective assessments by the clients that provided a perspective that was not captured in any of

the other instruments described above. Whereas each of the other instruments (except, perhaps,

the symposium) provided unique insights into a small subset of the aspects involved in this

study, this client feedback provided a holistic, albeit general, assessment of each team. Their

feedback represented those aspects that are more about the overall interaction and impression

they had about each team and its system.

7.2.8 Experimenter observations
Throughout the study, the experimenter kept notes about the different teams, interesting events,

and other observations. These observations, for the most part were in accordance with those of

the clients.

7.2.9 Team level analysis
Except email frequencies and person hours from journals, no quantitative metric could be

derived at an individual level. Therefore, most of the quantitative analysis had to be performed at

a team-level. Since we had only eight teams in all, with two teams in A condition, two in B

condition, one in C condition, and three in D condition, the study did not lend well to finding any

statistically significant trends among the different team types. Also, as will be described in the

following sections, one team from A condition and one from B condition were anomalies and

therefore skewed the quantitative results even further. Therefore most of the analysis in the

following sections relied on qualitative data with an exception of survey data.

7.3 Hypotheses and Data Analyses
In this section we take each of the hypotheses and present relevant data obtained from the

various instruments discussed above in conjunction to them. We state each of the hypotheses

from Section 6.3.4 here and discuss related data:

www.manaraa.com

 134

7.3.1 Hypothesis H1.a
The C team will create better quality software and have a better development experience than A

teams because of the implicitly high level of communication and situational awareness afforded

to a team with dual experts – not verified

We did not find any data to support this hypothesis. On the contrary, we found various insights

that appear to indicate that developing interactive software using dual experts may actually result

in a poor quality process experience and resulting products. In the following sections we use

different data items and potential factors that explain why this hypothesis was not verified.

Using the two measures of system value index and total feature count from the overall

comparison instrument, Team C came seventh out of the eight for both measures (we show this

in Figure 27 and Figure 26 as a descriptive instrument, and not for statistical inference).

1056.25

841.50

732.50
664.25 648.00

535.25
467.75

377.25

Mean

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

A2 B2 D2 A1 D1 D3 C B1

Team

To
ta

l v
al

ue
 in

de
x

Figure 26: Total value index of all teams, showing relative standing of Team C

www.manaraa.com

 135

147

118 117
110

91 90
98100

Mean

0

20

40

60

80

100

120

140

160

A2 A1 B2 D3 D1 D2 C B1

Team

N
um

be
r

of
 fe

at
ur

es

Figure 27: Total number of features per team, showing relative standing of Team C

However, because of the single data point in this condition (only Team C), it is impossible to say

if this is truly representative of this condition or an anomaly. For example, if there is another C

team that performed exceptionally well, the range (the height of the box) as shown in Figure 28,

would provide a different insight into the C condition because it would result in a tall box

showing no difference with the other conditions.

Figure 28: Condition-level comparison by range for value index and total features

In the following sections we analyze some factors that potentially contributed to the poor

performance of Team C.

To
ta

l f
ea

tu
re

s

90

100

110

120

130

140

150

A B C D

Development Condition

V
al

ue
 in

de
x

300

400

500

600

700

800

900

1000

1100

A B C D

Development Condition

www.manaraa.com

 136

7.3.1.1 Team size, balancing, and dynamics
Team C had substantial issues with intra-group dynamics and cohesiveness. We describe these

issues here:

Unbalanced team
As discussed in Section 6.3.1, we used demographic questionnaires (Appendix A and Appendix

B) to balance teams for comparable experience in SE, UE, real-world experience, writing skills,

etc. Such balancing was not possible for Team C because we only had three students registered

in both classes and they had to be placed in a single team. This imbalance could have contributed

to this team’s poor performance.

Team problems and experimenter intervention
Every semester when we teach the UE or SE class we administer surveys to students periodically

during the semester to detect team problems. During this study, we had journals that provided a

deeper and more insightful understanding of each team’s performance and problems. Team C

happened to be one team that had many problems. There were issues with certain members not

performing their share of the work and unprofessional behavior (e.g. not responding to emails in

a timely manner, not returning certain work products in a timely manner for integration into

project deliverables, etc.). These factors could have influenced this team’s performance. Given

that the educational goals of the class had to take precedence over the study goals, the

experimenter had to intervene and admonish the problem members of the team. Although this

intervention surely dampened this effect, nonetheless, some problems persisted.

Lack of equal participation by team members
Related to the team problems described above, we also found that the individual hours spent by

the three members for this project to be widely differing, as shown in Figure 29. This disparity in

team-member effort probably explains why the team had problems, which in turn almost

certainly influenced their performance.

www.manaraa.com

 137

0

20

40

60

80

100

120

140

160

1 2 3

Participant

H
ou

rs

Figure 29: Team C: Individual person-hours reported as worked, totaled from individual journals

Team size and work load
Due to the fact that only three students enrolled in both classes, Team C’s size of three was a

result of a constraint rather than by design. When asked during the group interviews if a fourth

member would have helped them, they said yes, “because in other teams they had four members

working on a UE deliverable and three for the SE side… but we were just three for both”,

comparing themselves to A and B teams (D teams had about 5 members per team). This small

size could have contributed to lower than expected performance as they were constrained to

ideas and creativity of three people instead of the larger groups in other conditions. However, as

discussed later, the Team C developers all reported that their work from the SE and UE classes

overlapped about 40-60% thereby potentially compensating for the smaller team size. There is no

evidence seen in any measuring instrument used in this experiment to verify or contradict such

compensation.

7.3.1.2 Potential disadvantages of the C condition

Cognitive dissonance between the SE and UE roles
Given that the members of Team C had to play two roles in this project that are often at odds

with one another, they could have been a victim of cognitive dissonance. As remarked by my

team member in group interviews: “we had to enter [the SE and UE tasks] with a different

perspective… with a different terminology and such.” However, this remark is in contradiction

to what they said about how the fact that they had to play both roles helped in reinforcing their

www.manaraa.com

 138

designs and in reassuring them that they were on the right track (see “Reassurance of being on

the right track” below).

Inherent conflict of interest between the two roles
Given that the members in development condition such as that of Team C had to play both SE

and UE roles in the project, it appears that they were subjected to an inherent conflict of interest.

In the words of a team member: “… we had no pure perspective. We couldn’t tackle UE

problems with a 100% UE perspective, same thing for SE [..] which wasn’t intended but it

couldn’t be helped”. They acknowledged that their system was just “sufficient and […]

minimalist” and that they could “have used some conflicting opinions”. During the group

interview, this aspect was probed further and we reproduce that part of the transcript here:

Team C member: We always knew what the other [role] was going to [do] so it kind of limited

what we were doing. We made sure that the basic requirements that the clients wanted

were captured in the system but we did not go out of the way to develop something… or

make extra features done or something like that.

Experimenter: Because you had to implement them yourself?

Team C member: Yeah. We couldn’t be like the other teams where they said, what the heck it is

not our problem… it is the problem of the SE team. We were the SE team as well!

Experimenter: What were some examples of features which you left out because of that?

Team C member: Search option. Search option in preorder website.

Also, Team C was the only one in the study that developed a standalone component of the annual

plant sale management system. This was not appropriate to the client’s workflow because they

do not have dedicated computers to have a standalone system installed during the plant sale. All

other teams opted for more appropriate, but much harder to implement, web-based solutions.

When asked about this in the interview, they said they had no real reason for doing this, implying

they chose the easier of the two options.

Effective software development entails a fine balance between a creative design endeavor and a

practical implementation effort. In the case of dual experts, there appears to be an imbalance

www.manaraa.com

 139

between the two with the developers choosing the easier way out of design tradeoffs. As one of

the Team C members remarked “well it would have been nice if I don’t have to code [the UE

design]” implying that they would have emphasized the design more if it did not entail more

work. They also commented that an independent review of their work by a dedicated SE or UE

role would probably have helped them create a better product.

Life cycle constraints
Because of the classroom setting, and the way deliverables in the two classes were scheduled,

Team C appears to have had tougher constraints with respect to functioning as dual experts.

Whereas in other joint teams there were two distinct sub-teams working on the UE and SE

deliverables, Team C had three people to work on them in the same amount of time. One of the

Team C members commented “time constraints also became a problem… for the other team they

had two weeks each but we just had one two week [period] for us. Of course we do agree that

there was a lot of overlap but we can't just use the [same] deliverable right?”

Also, as reported by one member in this team: “[when] it comes into the actual coding phase the

design [got] to be more sophisticated for the UE side. [This was] a problem. As we started

coding, we had to draw from the initial prototype in UE and this was kind of awkward because

we were also testing the UE prototype at the same time. So [as] that was [be]coming better, we

were finding problems with that, but we couldn’t really change that in our design through the

code itself. We just had to keep going on that. The modules itself, we coded them, tested them,

and brought together. That was fine. There was no real integration phase in the sense that the

other groups faced. This would have been around the part where the other groups combined the

UE's design with the software engineers’ code. We didn’t really have that so that was kind of a

plus judging from some of the comments from the other groups.” It appears that the problem of

implicit differences in iterativeness between the SE and UE life cycles was compounded in the

case of dual experts by the fact that both roles are played by the same people. Quoting a Team C

member “it's tough to program the interface side of the project when we haven't done all the

testing for it yet, but we need to have something in there for the application. We have to program

the app, but the interface testing isn't finished [yet]. […] We were kind of working with a system

that we knew was flawed, but just kind of had to go with it”; the urgency to finish a work

product for the other role’s use seems to be less pronounced in the case of dual experts because

www.manaraa.com

 140

they are the other role as well and therefore had no external pressure to complete and share the

work product. On the other hand, one could also argue that this is actually an advantage because

they could have planned better to facilitate their other role’s work activity and that there was no

need to negotiate with a counterpart role as in the case of other joint conditions. However, the

extra diligence required to pursue this advantage often is lost in the scheduling and other

pressures of a development project.

7.3.1.3 Potential advantages of the C condition

Overlap of work activities and reduced workload
One of the advantages of being in a condition where the same role is performing work activities

from both life cycles is the amount of overlap between the two life cycle processes. During the

symposium Team C reported that 50-60% of their work overlapped. This was in accordance to

the data from the survey instrument where all three members of this team chose 40-60% for the

question asking about the amount of work overlap between the two life cycles. As one of the

Team C members said “because they [SE and UE processes] are very related, […] have similar

objectives for each, [have] work products [that are] very similar if not almost identical in some

cases, and many times one side’s work in a phase influenced the other, [… the] advantages for us

in the sense that we were students in [both] classes and [that] there was a lot of overlapping

information, […] while we were doing a lot of these documents, a lot of the information could be

reused or rewritten, drawn from a lot of research [that] was behind these things that were already

done. Some examples [were] product concept statement and the product overview document, the

hierarchical task analysis and the data flow diagram, use cases and scenarios. They all wove

themselves together fairly well”. Numerous other comments supported this apparent overlap.

Here are a few examples:

“While developing the product concept statement and the product overview document, we found

that the two overlapped. The technical description that we [provided] with the product concept

statement [as part of deliverable for] UE served as the outline for the product overview document

that we had submitted for SE”

“Then for the SE deliverable, we created the SRS and part of this document had use cases which

describe possible task flow, work flow through the system […]. These are very close to what UE

www.manaraa.com

 141

uses scenarios [for] so we kept these and would rewrite these for an upcoming UE deliverable.

Also in the SRS [there] was the dataflow diagram. This also showed the potential workflow

through the system and different levels of modularity in functionality. This was very similar to

the UE [life cycle’s] hierarchical task analysis which shows a task […] broken down to subtasks

[...]”

“We found that as we were [preparing] the low-level design document, we were taking UE

concepts into mind. We used our screen designs that we had made to think about what other

[software] classes we might need”

“Immediate collaboration”
Another advantage with a dual expert condition is the prevalence of, as one team member put it,

“immediate collaboration”. There are no operating and scheduling overheads for working with

the counterpart role; a significant issue in the case of other joint team conditions. In the words of

one of the Team C members: “some advantages to being dual experts is that there is immediate

collaboration, so really if we needed something we didn’t really had to go to another group or

setup a meeting. So [we] kind of knew everything that was going on. So this also lends itself to

having complete contribution and control. So the design was always consistent because we

always knew what was [going] be there. When it came for integrating the functionality and the

interface, there were really no surprises because we planned it the whole time. That was kind of

nice.”

Reassurance of being on the right track
Due to the parallels in the two life cycles and the close coupling between the UI and functional

core of an interactive system, dual experts seem to have an implicit reassurance that they are on

the right track when they undertake activities in one life cycle which has a close parallel in the

other. For example, talking about the overlap of the work activities in the two life cycles one

Team C member remarked “we were sure we were doing the right thing because we had

something to base our work on from the previous deliverable [in the other life cycle]. We had the

product concept statement to begin with right? Based on that we just iterated [and created] the

product overview statement for SE. [Similarly] we used the SRS [software requirements

specification] for the [UE] screen designs.” Therefore there appears to be a sense of confidence

www.manaraa.com

 142

in doing activities that were related to previously completed activities in the other life cycle.

However, it can be argued that this could lead to a false sense of confidence because there is no

objective opinion or review from an independent role.

Team C Summary
Based on the various instruments, it appears that using a dual expert condition such as that used

by Team C for interactive-software development lends itself to the possibility of a somewhat

lower overall workload due to the significant overlap among the two life cycles and higher

situational awareness of the development space because the same people are performing the two

roles. However, there appears to be an inherent conflict of interest between the two roles,

resulting in systems with minimal functionality. This conclusion is in accordance to the client’s

overall impression of Team C’s system “First page was nice but the rest is

unprofessional/rudimentary. No imagination. Not creative. Had stuff with a box around it. Very

minimal.”

7.3.1.4 Hypothesis H1.a summary
Hypothesis H1.a, in which we stated that teams using C condition would perform better than

those using A condition, was not verified. Inherent conflict of interest and cognitive dissonance

implicit in team members of C condition seems to prevent their producing a quality system and

having a quality process.

7.3.2 Hypothesis H1.b
The A teams will perform better than B teams because of the amount of communication,

coordination, synchronization, and dependency checking afforded by the Ripple instance to A

teams and the fact that they were introduced to their counterpart teams at the start of the

semester – partially verified

As shown in Figure 30 and Figure 31, the A teams performed better than or equal to the mean

with respect to the value index and the number of features and came in first and fourth in the

overall value index ranking (Figure 30) and first and second in total feature counts (Figure 31).

However, the performance was not consistent across the two teams in this condition. Whereas

Team A2 performed as hypothesized and created the best software system (as rated by the

clients), Team A1 was fraught with problems and required experimenter intervention. The

www.manaraa.com

 143

potential reasons for why these teams differed widely in performance, new insights into this

hypothesis, and a revised hypothesis are presented in the following sections. We start with Team

A2.

1056.25

841.50

732.50
664.25 648.00

535.25
467.75

377.25

Mean

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

A2 B2 D2 A1 D1 D3 C B1

Team

To
ta

l v
al

ue
 in

de
x

Figure 30: Total value index of all teams, showing the relative standing of the A teams

147

118 117
110

91 90
98100

Mean

0

20

40

60

80

100

120

140

160

A2 A1 B2 D3 D1 D2 C B1

Team

N
um

be
r

of
 fe

at
ur

es

Figure 31: Total number of features per team, showing relative standing of the A teams

www.manaraa.com

 144

7.3.2.1 Team A2

Positive inter-role dynamics
Team A2 enjoyed a good quality of inter-role interaction from the very beginning. As one of

Team A2’s SE members commented early in the project “generally I've had good experiences

working with the other team […] they have been easy to talk to and meet with when necessary

and have had good ideas about the way the project should go.” Such a positive inter-role

dynamic was maintained throughout the project as one UE role remarked in his journal “it has

been smooth sailing […] towards the end of the semester, not a whole lot [more] to say.” Their

combined initiative to work with the counterpart role established a good working relationship

and common ground between the two roles as described by this Team A2 member: “It's amazing,

for some reason both of our teams are on the exact same page for development. Every issue that

has come up has resulted in no more than a five minute discussion and then a resolution that

everyone is happy with. So far so good, it’s been quite a relief not having to fight with each other

and getting along well. After hearing about the other teams struggling to find common ground,

and then to see us achieve it so easily makes me think that working in teams like this could work

out, when using the right people.”

Good communication between the two sub-teams
The good inter-role dynamics translated to effective communication between the two roles. As

evident in this journal entry by a UE member, “[The SE role] told us they were using Pay Pal for

pre-order credit card stuff. Our designs [from] the user meeting didn't reflect that decision, but it

was nice to be kept up to date on their decisions, so we could change our designs,” effective

communication helped them manage change and minimize costly changes later on. When they

encountered problems or issues they were able to quickly resolve them by scheduling a meeting

as reported here by a UE member “[the] SE [role] sent us [an] email, [pointing out that they]

found places where we are thinking about things differently. [We] sent him the design sketches

[… and] talked about having [a] meeting to settle things. [We had a] meeting to clear up issues

[and] found out they're using JSP. [We] talked about how we should make the hi-fi prototype to

ease the integration process.”

www.manaraa.com

 145

Effective collaboration
Each role proactively took initiative on collaborating with the counterpart role from the very

beginning. As recorded by a UE role in his journal during one of the initial phases of the project

“[the] SE Team did a few screen designs and brought them to the Requirements Validation

meeting. This provided us with our first iteration of screen designs and a great view of what the

SE Team is envisioning for the UI design.” As the project progressed they maintained this level

of collaboration. For example, they collaborated closely on their cost-importance deliverable

where the SE team helped the UE team with cost to fix attributes in the analysis. Similarly each

role made sure one of their representatives was at all the important meetings of the other role. As

reported by this UE team member “[we] found out at [the] user meeting that they would like

login [authentication] with VT PID and password. Since there was an SE rep at the meeting, we

[were able to] just quickly ask him if that could be done [and let the client know we would

incorporate that feature into the system].” In accordance with the hypothesis, their constant

collaboration resulted in a successful process experience as described by this team member:

“And we just kept iterating over [the design] talking with the UE team all the while saying ‘hey,

how is this, what can we change’? ‘How can we make the next iteration better’? We were also

very self-organizing in that if something came up, someone would step up and say “hey, I know

how to do that, I can take care of this” and it just made for a very good overall experience.”

Periodic synchronization
The two roles also conducted periodic synchronization meetings to keep their designs consistent.

This team acknowledged and acted on all Ripple consistency directives (Section 5.2.2.1) that

were sent to them (in contrast to Team A1). They also kept communicating about various aspects

beyond the Ripple messages. As described by a Team A2 member “we also had several meetings

outside the ones that just [Ripple required and would send messages saying] ‘hey we all should

meet up and try and condense’. And for any other meetings that say the UE team had, we would

always make sure we had at least one SE representative to be the voice of the group to say ‘hey,

this is what is going on, this is what we think, this is where we are coming from’ and then report

back to the rest of the group. So […] everyone generally knew where the other team was”.

www.manaraa.com

 146

Minimal problems
Each A2 sub-team had some issues with one of their team members not contributing equally to

the project. In spite of this intra-role team issues, the overall collaboration between the two roles

had minimal problems. Apart from the few communication problems during the first week of

classes (which is probably a normal phenomenon given the volatility of students’ schedules as

they decide on what classes to take), there were no real problems between the two roles. When

asked what problems they faced working with the counterpart role, they responded “this has been

our toughest question. Basically all the ones we had were so small it is almost not worth

mentioning. [The only issue we had was that of PayPal integration] that was not until a couple of

weeks that we thought of but they were like ‘oh! You never brought that up.’ So they hadn’t put

that in their hi-fi prototype thing. But really it was just adding a button so it really made no

difference. We also had an issue at the beginning where we [were not clear about] who was

actually going to write the code and stuff like that. That was probably our biggest issue because

we didn’t know what our responsibilities were [and] how we meshed as a group. Then we asked

you and you cleared it up for us.”

Team A2 summary
Team A2 performed as hypothesized in hypothesis H1.a. The client’s overall reaction to this

teams system was consistent with our observations of their success in the project “they are

amazing! Wow. Export to Excel feature is good thing. Had examples to show how to use the

different fields on the system.” Apart from the hypothesized impact of communication factors,

this team demonstrated the importance of another two factors: will to work with the counterpart

role and respect for that role. The gestalt of this team’s success can be summarized by the

remarks of on of the Team A2 members: “being on the same page from the beginning worked

[well for us]. Being able to communicate since we were an A team… from the beginning of the

semester helped us a lot. We really did not have that many problems. No fists were thrown, no

arguments really got heated, […] The SE team would say something and we were like ‘yeah.

Ok’. Or we would come back with something… I mean nothing really really major happened

[and] that was really nice. We contribute that, like I said, to early and frequent communication.

We collaborated on the initial design, the sketches, how they pretty much stayed the same as they

evolved through the semester. And we also respected each others responsibilities. The SE team

respected the UE team’s responsibilities of deciding what the interface should look like and what

www.manaraa.com

 147

kinds of things it should have or the way things should be laid out. We didn’t tell the SE team

[they] should do databases this way [or they] should run this JSP, why are you doing that, so that

really helped us a lot, that kind of respect for each other.”

7.3.2.2 Team A1
In many ways Team A1 was an opposite of Team A2. Whereas team A2 had an enjoyable and

effective overall process and resulting product, Team A1 had a frustrating experience with a

below-expected quality given their development condition. In the following sections we discuss

the different factors that appear to have played a role in this team’s performance.

Incompatible UI and backend components
The SE and UE sub-teams ended up having two separate visions for this project, and they never

could completely reconcile their differences to create a cohesive product which was in line with

the UE’s design and SE’s implementation. Even though the two teams were introduced at the

beginning of the semester, and conducted two meeting with the clients as a joint team, their

designs and product evolutions took widely divergent paths. Quoting the members from this

team: “the first thing that we found was that we had different priorities from the beginning.

Although we didn’t have a problem deciding on doing a web interface because our visit to the

greenhouse, [the client] had mentioned that we would be using just anybody's laptop who

[decides] to show up that day. So that had to be a web [solution … and not] going to be any kind

of a standalone application. So we did have that in common. We agreed on a name pretty early

on: WebGarden is the name of our design. [But] everything else was completely different. […

We UE were] thinking about the users, the horticulture club members, what would their tasks be

at the point-of-sale, we were thinking about the customers, who were the home owners, what

kind of things would they like to buy? How would they like to shop for things? How easy could

we make it for them? So we were all about ease-of-use because we were the usability team. Now

the software engineering team had different perspectives.” At this point the self-proclaimed SE

lead added: “when we were talking to the clients the overall feeling that I got was that they

wanted this to speed up their point-of-sale process [...] the overall main feeling that I got from

them was that this system had to make their job easier and faster at the point-of-sale. So that was

always at the back of my mind when I was coming up with my system design […] that it needed

to be quick, it needed to be easy-to-use, very minimal, you know it just need to go ‘in a snap’ so

www.manaraa.com

 148

because of that a lot of our design [was about] minimalist, very efficient, very quick and easy to

use. We took a lot of pointers from Google, the way that they have their web [...]”. The UE role

continued “and this led to a totally different idea of what shopping is! To the UE team shopping

was you know, you have time to kill, you were looking for some plants, maybe you want to pick

pink or purple, you are browsing around, but for the SE team it was like, a serial killer is chasing

you and you had to buy a rose plant. I mean that was what was behind what they were looking at.

So surprise, our designs were nothing alike.” As can be observed, the UE role discussed what

happened from the perspective of the entire UE sub-team whereas the SE role spoke in the first

person, indicating the fact that he (one SE person), almost single handedly, steered the SE’s

design according to his perceptions, biases, and opinions. These differences in goals and

behavior, among other things, led to almost incompatible designs from the two sub-teams,

designs that could not be integrated in the end.

Disjointed SE sub-team and lack of team initiative
The A1 SE sub-team had many team problems even amongst themselves. They did not share the

same vision or engage in a collective collaboration to create a quality functional backend. When

one of the SE members self-proclaimed himself to be the lead, and even took control of the UI

design, the other SE members did not attempt to discuss the issue but followed the lead. Lack of

cohesion between the UE and SE roles prevailed throughout the project as exemplified by an SE

member’s statement: “The UE guys suggested we have a name for the system. [The] SE [people]

are not very enthusiastic about it. But I think it’s a good idea to have one.” Lack of cohesion

within the SE sub-team also caused issues pertaining to the quality of deliverables as reported

here: “we got a poor rating on our SRS because we didn’t spend enough time on the integration.

The work ended up being patchy in spite of spending a lot of time on it.” Divergent views of the

product and process led to issues pertaining to the broader vision of the project as reported here:

“my team members always think that our product will not be used by the clients. I agree that we

may not be able to give 100% working features, but at least we can attempt our best. Also, they

keep repeating that all documents produced so far are a waste of time and we should have instead

got more time to code.” The roles never seemed to work together as shown in this journal entry:

“we desperately need to meet the UE guys to know where they are heading. We SE guys are

making good progress and should get down to coding soon as the low level design is ready.”

www.manaraa.com

 149

Uncooperative self-proclaimed SE lead
One of the fundamental reason for this teams failure to produce a quality product befitting of an

A team was an uncooperative SE member who became the self-proclaimed lead of the SE team.

The other two SE members in this team noticed and anticipated problems because of this but did

not take any action to make their concerns heard. A journal entry in one of these two members

noted “***** thinks that the UE designs are not good, so he plans to do the UE part on his own

too. I think when we have been placed with a counterpart UE team, its better to discuss these

issues with them first and come up with a common solution. If not, then matters can be

escalated.” As the project proceeded, with this kind of arbitrary action by this individual, his lack

of interest in including UE inputs, his lack of respect for the UE people, and his unwillingness to

communicate, matters did escalate and the communication breakdown between the two roles

became more severe. After many failed attempts by the UE role to work with the SE role, and

after the self-proclaimed SE lead not attending most of the joint meetings, there was one meeting

where everyone finally got together. However, the SE role was still reluctant to incorporate any

of the UE’s designs as recorded in a journal entry of another SE member: “Looked like *****

didn’t implement the suggestions from the previous meetings. I think the major problem we had

is ***** is a UE person taking the SE course. He should have identified his role for this project

as a Software Engineer rather than a Usability Engineer. He kept thinking from both angles

which led to this asynchrony. I am also not sure how many of the suggestions (changes) he will

agree to actually implement now. If he would have allowed me and ***** to touch the front-end,

we could have at least caught some common ground by reusing the UE screens.”

This lack of interest on the part of the self-proclaimed SE lead to work with the UE role stems

from underlying biases and perceptions he had, as reported in his journal entries: “we (at least I)

have not really been paying attention to the UE guys since their input does not really affect our

current progress. I'm 99% sure I will just end up scrapping their UI and writing my own since I

want to use AJAX and I don't think they even know what that means. AJAX is very difficult to

implement if your UI is not designed for it, as all your content is dynamic. I consider myself

primarily an HCI person, so I suppose I think I can do a competent design job on the UI (I like to

do my own design work). [I] haven't really brought this up yet [with the UE role and] what they

don't know won’t hurt them.”

www.manaraa.com

 150

On the UE side, there was frustration and resentment towards the SE sub-team due to their

apparent apathy towards their designs as noted by a UE member in his journal after attending an

SE’s demo to the GTA of the SE class: “We were, or at least I was completely disappointed with

the prototype developed by SE team. They seemed to have completely neglected our design and

their model seemed to be a lot different from the one we proposed. The pitiful thing is that

despite the fact that we shared our design, artifacts, paper prototypes, findings and feedbacks of

our meetings with the clients and all other relevant information with them long [time ago], they

did not seem to consider this information at all. The SE team’s rationale for not adhering to our

design was that they did not have time to implement our design specs. The irony is that, they

implemented some of the stuff which is not a part of our design nor the client’s requirements. I

was really surprised with the SE team's attitude and their level of commitment to the project.”

About two weeks after this demo to the SE GTA, the two roles finally met and looked at each

other’s designs in detail, it was evident that there was almost no overlap in the two designs. A

UE member noted in his journal “there are two important issues that I discovered in the meeting.

First, they had no clue of our design and client requirements, they seemed completely ignorant of

our earlier feedback. It was quite obvious that they did not consider our design while they were

implementing [their] model. Second they said that they were short on time and could not adhere

to our design specs which seemed so ridiculous because as I mentioned earlier, we gave our

specs and have been giving our feedback to them since [a] long [time]. The time and effort that

we spent designing our low and high fidelity prototypes, the long discussions on design issues,

all seemed to have been futile.” Another UE member noted: “The SE team's version looks

nothing like our version. ***** was planning to do searching by matching on a few letters the

user types in. We pointed out that the user might not know the name of the plant. He said they

are all horticulture majors, so they should, but that's not what the clients told us. Also, the

preorder customers might just want to browse for plants by picture or type. The UE team doesn't

have to implement the search, so we're only thinking about the user. The SE team is thinking

about the speed of the search (which is a good thing), but not about what the users know or don't

know.” This lack of SE support combined with a lack of proper understanding of the client’s

requirements and UE guidelines resulted in a disastrous experience and resulting system.

www.manaraa.com

 151

Futility of the Ripple Instance when ignored
It should be pointed out that being an A team, the members of Team A1 got periodic messages

from the Ripple instance to facilitate various forms of communication such as collaboration,

synchronization, and dependency checking. However, they were either not taken seriously or,

worse, they were ignored completely (by mostly the SE role). For example, one SE team member

remarked “we forgot to discuss the [Ripple] project directives; strange that nobody among us

pointed that out” and in another entry: “***** and ***** both failed to turn up at the UE screen

walkthrough. I couldn't attend it because I had a class during that time, so I emailed them early

so they could plan ahead. Both of them agreed to attend it. It’s sad that neither of them

remembered.” This lack of consideration for Ripple messages was more pronounced in the SE

sub-team than in the UE sub-team. The UE role tried to adhere to the Ripple directives as much

as they could but, without reciprocation, their attempts were futile.

Lack of role and expertise distinction
As mentioned in the previous sections, the SE sub-team of Team A1 suffered from a severe

problem of not distinguishing the different roles and respecting the expertise of each role. The

SE role over-reached from their assigned role and decided to design the UI for the system on

their own. But since the UE had no control on the code, all they could do was attempt one-sided

collaboration with the SE role to get their designs adopted. One issue that compounded this

problem was the fact that none of the UE members had prior web design experience. The

prototype they created was not as polished in terms of look and feel as the SE’s system leading

the SE role to conclude the UE’s prototype was not worth considering. The UE role put a

tremendous amount of effort into creating the prototype that, even though looked unpolished,

had a significantly better design. However, it was largely ignored. This lack of respect for the UE

role and the unwillingness to work with them were the single most important reasons for this

team’s failure.

Team competence and experimenter intervention
So with all the above discussed problems with communication, intra-role collaboration, respect

and willingness to work with counterpart role, how did Team A1 manage to create a product that

is in the top half of the ranking of the eight teams? Based on evidence from the various

www.manaraa.com

 152

instruments, we believe there are two primary reasons: individual competence of the team

members and experimenter intervention. We discuss these two issues here:

Team competence

The self-proclaimed SE lead, in spite of his biases and prejudices towards the UE team, is a

brilliant programmer. He had substantial experience in the real-world as a professional web

developer and had the ability to implement a fully functional website quickly. His other sub-team

members, in spite of their lack of effort in discussing with the SE lead, were also very skilled

graduate students. The SE sub-team was compartmentalized, with the so-called lead coding the

UI and the others members implementing database and business logic. Therefore, when the

experimenter intervened near the end of the semester (see next section), the team was able to

quickly incorporate some of the core UE design ideas into their system thereby ending in a

product that was much better then their originally envisioned one.

Experimenter intervention
Due to logistical issues such as the unavailability of the clients for an acceptance meeting and the

fact that the teams’ systems had to be evaluated for the class grades, the experimenter had to play

the role of the clients’ representative and conduct the customer acceptance phase with the teams.

During this meeting the experimenter interacted with each system and, already being aware of

the various problems with the SE sub-team’s design, pointed out all the problems, noting how

their lack of cooperation with the UE sub-team had not only resulted in an inferior project but

also affected the UE’s formative evaluation and redesign phases. At the end of the meeting, the

experimenter showed how the SE design was of woefully poor quality as compared to the other

teams and how they could benefit from the design of the UE sub-team. That meeting had a

significant impact on the SE team and made them realize how costly their lack of collaboration

with the UE role was turning out to be in terms of their grades. They immediately contacted the

UE sub-team and spent about 70 person hours in the next week incorporating a prioritized list of

UE recommendations.

Summary of Team A1
Team A1 was comprised of members with significant individual talent. Whereas the UE sub-

team was a cohesive whole with a shared vision for the UI of the project, and zeal to collaborate

with the SE sub-team, the SE sub-team was disjointed with a lack of cohesion and a self-imposed

www.manaraa.com

 153

lead who refused to acknowledge the UE role in the project. In spite of the constant sharing of

work products and insights by the UE role, the SE role resisted any serious interaction with the

UE role as reported in one of the SE lead’s journal entries: “we spent about 90 hours combined

on this project [so far] and now the UE people want to meet for 4 hours so we can do their

project with them... where were they when we were coding the system? UE people are pure

evil. [And] I am not meeting for 4 hours.” This attitude lead to a frustrating experience and an

inferior quality product. The clients remarked that this team seemed to have a lot of functionality

but that most of it was not intuitive. For example, we quote a couple of remarks they made

during the overall product comparison exercise: “having cart and browse from the preorder in the

admin and POS systems is not necessary and confusing. It is not clear if the reports describe sold

plants or plants in stock.” It was not until the experimenter intervened that the SE role started

collaborating with the UE role, attempting to retrofit different ideas. Since this was in the last

week of the project it was not possible to make a significant impact on the overall quality.

7.3.2.3 Comparing Team A1 and Team A2
Even though these two teams were afforded the same communication by nature of the study

setup, through which they were introduced with their counterpart roles at the start of the

semester, and extra communication due to the Ripple instance, the two teams performed in a

widely different manner. Whereas Team A1 barely collaborated with the counterpart role (for the

most part fault of the SE sub-team), Team A2 was proactive in seeking help and collaborating

with the counterpart role. Similarly, whereas Team A1 almost completely ignored the Ripple

directives, Team A2 often went beyond the directives and met often and periodically. They even

exchanged work products that were not mentioned in the Ripple directives.

Similarly while A1 had major issues with their inconsistencies with the counterpart role’s design,

A2 had minor issues as reported here by one of Team A2 members: “Most of our issues are

really minor. Having been talking all along is making this integration process go really

smoothly, I think. Everything is going well.” Their willingness to work together made it possible

to synchronize in such a way that the UE team was able to use the actual functional system

developed by the SE role for their formative evaluation. In contrast, the A1 SE team’s design

barely supported the A1 UE team’s benchmark tasks. The UE team ended up conducting their

www.manaraa.com

 154

formative evaluation on a prototype and their results and analysis were obviously not applicable

to the SE’s final system, rendering all the hard work by the UE sub-team useless.

Another important distinction between these two teams is their approach to designing the

functional core. The A1 SE sub-team adopted the AJAX technology (without discussion or

consultation with the counterpart UE role), which did not lend itself for modularity as reported

by the SE role: “we started developing in AJAX and if any of you are familiar with AJAX, it has

a lot of hooks right into the actual HTML structure of a web page, so you have to do that first. So

when you have to start communicating, I mean using the java script to talk to the server, you

write back into the webpage.” This tight integration of the HTML structure (or the UI

component) and their business logic prevented easy modification. This was in direct contrast

with Team A2’s approach: “the modularity of our programming really helped out a lot,” where

they deliberately kept their architecture modular to incorporate changes as necessary.

Another distinguishing factor between these two teams is the extent of their team cohesion. The

SE sub-team in Team A1 divided the work in such a way that each member had no control or

access to the other members’ components. For example, one member designed and developed

the entire UI, while another designed and developed the databases and business logic layers.

Moreover, they rarely worked together while coding the system. Team A2’s SE sub-team, on the

other hand, often met together at a coffee shop while implementing the system, thereby

collaborating at a much finer granularity of software modules.

7.3.2.4 Hypothesis H1.b summary
Our hypothesis that the communication afforded to A teams will facilitate their performing better

than B teams was partially verified. However, we found that there are two factors that preempt

the communication factor: will to work with the counterpart role and respect for that role. In

spite of all the communication afforded by a particular development environment, success is

actually defined by the people who have to utilize that communication.

7.3.3 Hypothesis H1.c
The B teams will perform better than D teams because B teams will have design ideas brought

together from two domains, albeit late in the process and without any outside help from Ripple,

whereas D teams will have a narrow user-interface-only design focus – not verified

www.manaraa.com

 155

We did not find substantial evidence to support this hypothesis. It appears that our initial

assumption that D teams will have a narrow user-interface-only design focus is unfounded and

that the lack of a counterpart SE role actually removes potential implementation constraints and

encourages a broad and rich interaction design by the UE roles. However, this constraint-free

approach as facilitated by the D condition could have practical problems later on in the process

when the prototypes developed by the D teams are passed on to software developers (not part of

this study) and implementation constraints finally do become a reality. In the following sections,

we discuss the different issues that were observed in each of the B and D teams and explain why

we think this hypothesis was not verified. Similar to the two A teams, the two B teams also had a

large difference in the overall quality, albeit for different reasons. Team B2 surprised us by

creating a high quality system (second out of eight for value index as shown in Figure 32 and

third out of eight for overall feature count as shown in Figure 33) in spite of the constraints

placed on their development condition.

1056.25

841.50

732.50
664.25 648.00

535.25
467.75

377.25

Mean

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

A2 B2 D2 A1 D1 D3 C B1

Team

To
ta

l v
al

ue
 in

de
x

Figure 32: Total value index of all teams, showing relative standing of B teams

7.3.3.1 Team B2
Team B2 was a surprise in the study. We did not expect a B team to create a product that would

end up to be a serious contender for the best project that can be deployed for the Horticulture

Club’s annual plant sale. However, they did, and it was a close second. Only after a long

deliberation did the clients and the Horticulture Club governing body decide to pick Team A2’s

www.manaraa.com

 156

system as the final winner over B2’s system. This decision was before the quantitative analyses

such as feature count and value index were completed and before we knew the actual rankings of

the teams (Figure 32 and Figure 33). In the next section we explain their success by considering

the various factors that seem to have helped in their success.

147

118 117
110

91 90
98100

Mean

0

20

40

60

80

100

120

140

160

A2 A1 B2 D3 D1 D2 C B1

Team

N
um

be
r

of
 fe

at
ur

es

Figure 33: Total number of features per team, showing the relative standing of the B teams

Power team with highly competent members and prior shared-experience
Even though we tried to balance each team in the class as much as possible, Team B2 ended up a

power team with highly competent individuals. In the demographic surveys used at the start of

the semester for team formation, we asked students to rate their skills on different aspects such as

previous work experience but not the specifics of that experience. Therefore we had no way of

knowing, for example, if two or three people in the class worked together before this class. So

unknowingly we assigned to Team B2 three students (one from SE sub-team and two from UE

sub-team), who had previously worked together in a real-world software development company.

This prior experience led to a level of rapport that could have helped this team achieve a high

quality product. We show a part of the interview transcript where these aspects were discussed:

Experimenter: Do you think your prior experience working together helped?

www.manaraa.com

 157

SE member 1: I think it did help a little bit, because we did have some shared experience. I don’t

know if he [UE member 1] did, but [UE member 2] and I also did our undergrad here at

VT.

SE member 2: I [also] felt comfortable right off the bat talking to [SE member 1] about whatever

because I didn’t really know him coming in, but I knew who he was [because I did my

undergrad at VT too]

SE member 1: So a lot of us already knew one another either from undergrad here or from work,

so that helped, we didn’t have to establish synergy. We had some shared experiences.

UE member 1: Yeah that is true… we didn’t need introductions that other teams probably did.

[UE member 2] was there in my team too [who worked with me in the real world]. So we

did not have any problems communicating.

Apart from their prior shared experience, this team had very competent members who adopted

good software development practices to account for their lack of awareness (until late in the

project) about their counterpart role’s design. The SE sub-team undertook a thorough analysis

initially and designed the backend with the potential for change in mind. As one SE role put it:

“We knew upfront that this [project] was going to be a bit of a challenge, especially since we

didn’t see UE guys’ design. [Therefore] we did a lot of work upfront. I don’t know if you [the

experimenter] remember, but our SRS was 75 pages, design document was over a 100, I think.

We did a lot of work and planning up front, a lot of diagramming, just so that we would have our

mind wrapped around the system from the very beginning. The diagramming, I remember doing

a couple of iterations, we threw diagrams back and forth, and just ideas, workflows, whatever we

were doing, that helped us a lot. All three of us on the SE side, before we met the UE team, had a

pretty good idea of what [the backend] would look like down the road.”

Apart from their thorough planning and good design, they were also creative when confronted

with challenges and adapted to new technologies. For example, as reported by one SE member,

when they faced challenges, instead of struggling with problems, they investigated the

availability of better solutions elsewhere: “in-place file upload was […] more difficult than it

should have been, which was a problem I think with the JSP implementation that we were using

in Tomcat. And we finally ended up using a third party solution ‘Jakarta Commons Framework’.

www.manaraa.com

 158

And we were fairly unfamiliar with the technologies required in order to make all this work [but

adopted them anyway because they were a better solution].”

Their general competence, thorough planning, and agility in dealing with difficult challenges

appear to have played a significant role in this team’s performance in this study. When asked

how they managed to do such a good job given all the constraints with the B condition, a UE

team member, looking at other nodding UE members, responded “to compliment the SE team, I

think their architecture […] They did a good job integrating our design into their architecture.” A

similar opinion was shared about the UE sub-team by the SE sub-team. The overall competence

of these two sub-teams contributed significantly to the success of this team. One SE team

member remarked: “If we were an A team and incompetent, we would have failed. We trusted

[the UE’s] design and [they] did a good design. We didn’t have to worry about ‘ok we don’t

really trust these UE guys,’ so we will do everything ourselves. That seemed to be a problem

with a lot of teams. There were good SE teams and bad UE teams and there were good UE teams

and bad SE teams. I guess we sort of got lucky on that we ended up with a good UE team and a

good SE team.”

Inertia of inter-role interaction
Interestingly, the inter-role rapport within Team B2 did not start in such cordial terms. The first

meeting between the two roles after they were introduced was a disaster. There appears to be

certain inertia in getting around to working with a different team after being part of one group for

two thirds of the semester. This inertia was prevalent even before the actual meeting took place

as recorded by one SE member in his journal: “It seems like it's taking us forever to get a

meeting set up. I suspect this is due to the fact that the groups are independent (or have been up

until this point). Since the groups have strong intra-group cohesion, it may be harder to form

inter-group cohesion, even though our groups do have some interrelation thanks to the

connection between myself, *****, and ***** [from our prior experience working together].”

To add to this inertia, there was an unexpected communication breakdown in negotiating the

time and place of the first joint meeting. This breakdown resulted in only one SE and one UE

member attending the meeting. In that meeting they realized that their designs were

fundamentally different because the UE envisioned a standalone rich-client application for the

www.manaraa.com

 159

inventory system and point-of-sale system, whereas the SE team designed the backend

components for a web-based solution.

This communication breakdown about the first meeting and discovery that their designs were

widely different combined with the inertia of inter-role interaction led to some serious teething

problems, with the two roles initially resenting one another. An SE member recorded his

perceptions on the first meeting as: “The first meeting was incredibly disappointing. Not only did

almost nobody show up, but the entire thing was a comedy of miscommunications and miscues.

The fact that our teams were not synced up as to the format of the deliverable was especially

vexing. I'm sure UE is unhappy that a lot of their design is targeted towards the wrong platform,

and I am unhappy because we will have to adapt a UE design for a rich client to our Internet

platform. Also, I was shocked at how poorly we were able to communicate. I had assumed that,

given that I knew *****, we would be able to have an amicable discussion and resolve

differences easily. Instead, I felt as though I was banging my head against a brick wall.

Originally I was very optimistic about dealing with an apparently talented UE group, but now I

feel as though having to adapt to the dictates of a separate user design group is going to be the

biggest challenge in this project.”

Role distinction, respect for counterpart role, and luck
So how did a joint-team that started on such disastrous note, accomplish a quality product at the

end? It appears that the key reason for their success given all the constraints of a B team was

their resolve to respect their counterpart roles and to keep the two roles separate. As one UE

member remarked “we had good separation between the roles. [The SE members] were willing

to put an effort into our usability decisions but would accept what we said in the end.” Another

UE member (a former VT undergraduate student now working full time in a software

development company) with real-world software development experience commented: “I very

early on told myself that I am not going to question them at all on SE process, which I did not.

Even though I wanted to come out and say ‘what is it you guys are doing?’ I very early on said

that I am a UE guy and [will] keep [to] my thing. I mean even ***** [who worked in the same

company as a software developer before] who knew this stuff, […] was in the right frame of

mind to suggest only [on functional aspects] and they were really open with the Java side of

thing. They even were willing or wanted help from him.” An SE team member remarked “there

www.manaraa.com

 160

was not a single meeting where we discussed about how [to design] the [user] interface to date.

In our [joint] meeting[s], we always discussed about, ‘ok this is it. How do we get here?’ That’s

it. What is it, how is it, it [didn’t] matter to us.”

Apart from this clear separation of concerns where each role respected the other and offered to

help or asked for help when necessary, without imposing or acting unilaterally, Team B2 was

also a little lucky with respect to how the two sub-teams separated their concerns. As one SE

member mentioned: “one thing that definitely helped was that [the UE] had broken [the system]

down the same way that we did. So we didn’t [have] to make a lot of changes to our underlying

architecture. We tried to make it modular so that we could adapt if they did something

completely bizarre, but thankfully we didn’t have to test that out because they didn’t.” When

asked what he meant by dividing it the same way, he continued: “like the preorder, point-of-sale,

and then they also had the same sort of tasks in each different subdivision. Like they did not

want to combine POS and preorder in any sort of weird fashion.” A UE member added: “[…] I

think we really ended up sharing the same elements on how we think the system should be used

and I think this really took out a lot of arguments which would have happened [otherwise].”

Reuse of UE’s prototype system’s code in SE modules
As mentioned in the previous section, the two roles offered suggestions to one another and in one

case a prototype whose code could be very easily reused in the real backend. The UE role

developed a high-fidelity prototype whose look and feel and behavior was very close to the final

system. They needed to build a prototype of such high fidelity (and functionality) because their

design incorporated complex UI behavior such as auto-complete of form fields which could not

be faked easily. Therefore during the implementation stage the SE benefited from the UE’s

prototype as remarked by an SE member here: “well [we] completely [took] the preorder [code

and] translated [it] for the inventory.” Another SE member added: “anything that we ended up

using was preorder code that we adopted to [the] inventory [component]. We couldn’t use most

of the C# code that ***** wrote for the hi-fi prototype. Obviously the prototype was very

referencable but not implementable. We could look at it and say, yeah this is how it is supposed

to work but we couldn’t take [actual] code from it.”

www.manaraa.com

 161

Negotiation and inter-role collaboration
After the two roles resolved their initial problems with interaction inertia and started to respect

the other role, their experience improved significantly. Apart for that, or rather as a result of that,

they had good collaboration and negotiations with the counterpart role. As one SE member

remarked: “I was really pleased with the supportiveness of the UE team during our last meeting.

I was expecting them to be upset at the number of their suggested design features we had to

completely ignore, but they were very understanding about it and also very nice in their praise of

our efforts. I suspect a lot of this is due to the fact that the UE team is composed of people

knowledgeable enough to understand the effort which went in to the creation of what we have. In

an interdisciplinary team, I think it is key to foster understanding about the effort each member is

putting into the project, so that then that effort can be properly appreciated.” Another SE member

said: “[we] reached a consensus on several aspects of the user interface design. [We also]

discussed about various functionalities that could be given more importance due to time

constraints. It was a very good first meeting with the UE Team. Unexpectedly everyone was

willing [and] ready to discuss […] matter[s] and compromise on several issues. Everyone took

equal interest and contributed well during the meeting.”

Challenges arising from communication constraint
But of course not everything was roses for Team B2. Two key issues arose due to the lack of

communication with the counterpart role: lack of consensus on software architecture and

platform, and lack of awareness of counterpart role’s interpretation of the project requirements.

The lack of consensus on the software architecture and platform led to a mismatch in the type of

preorder component adopted by the two roles. One SE member recorded in his journal: “UE

software implementation [of the prototype is in] C# […] for Point of Sale and Management,

because UE assumed we were doing rich clients on some subsystems. They went through quite a

bit of the implementation for this so some work was lost!!! [However our solution is web-based

and] […] the implementation is in JavaScript so ****** is trying rigorously to implement the

same aspects in his JavaScript layout (copying a lot from previous Preorder code).” Another SE

member remarked: “One of the biggest problems that occurred during the building of this project

was that the UE team was not aware of the platform we were going to use for implementing the

system. Also they were not aware that a Web application was being developed. Hence they

www.manaraa.com

 162

coded in C# and made a standalone application which was of no use in the end. It was a waste of

effort and time. Proper communication should have been made to the UE team and they should

have been aware of what the final system would be like so that they could work on those lines.”

Another problem Team B2 encountered because of this lack of consensus on the software

platform was during the UE’s formative evaluation. Quoting an SE member: “another problem

was on the UE side with the formative evaluation. Since as I said before, they thought we were

doing a rich client they were unable to do the formative evaluation with what we have developed

because it didn’t very well match what they have developed in their hi-fi prototype. They ended

up having to do their formative evaluation using these prototypes and as a result it was difficult

to incorporate [their] results into what we have developed because some of the issues they

encountered no longer existed in the browser client, others of these issues we had already fixed

and others of them were just completely unfeasible given the differences in the platform. So then

the cost-importance analysis that they created ended up not really applying to our product and

this caused a little bit of a disconnect as well.”

The problems with lack of communication were not limited to the mismatch in platform alone.

The second major issue Team B2 faced, which led to the two teams having challenges

throughout the project, was lack of knowledge of how the counterpart role interpreted the

requirements for the project. One SE member said in his journal: “Also I repeat that some sort of

interaction should have taken place between the two teams after SRS to discuss the requirements

because they were not aware of several functionalities in the system that we included [that] they

didn’t implement [in the prototype].” Another SE student remarked after the requirements

analysis phase: “During many of [our] group meetings, we somehow felt [it] compulsory on

designing the system so that it would not hamper our design when the UE team joined in. At

every stage while eliciting the requirements, we discussed about what could be the implications

on our design if the UE team did not agree on some of those aspects. I personally feel that if

given an opportunity, our team would like to meet with the UE team [at least] once. This would

assure us that the work put in by us would not be completely refuted by the counterpart team,

especially predicting that the UE team will have sky high demands on the design of the system in

terms of usability.”

www.manaraa.com

 163

Summary of Team B2
Team B2 was composed of extremely competent members who created a quality product given

the lack of communication with their counterpart role until two-thirds of the way into the

semester. Initially they had problems working with the counterpart role but after the first meeting

they started to respect the counterpart role and to keep the two roles separate. Two of the UE

members had significant software development experience and offered advice and in come cases

actual code to the SE team. The SE team worked hard from the start to create a design that would

be change tolerant. Even though they faced many challenges because of their lack of

communication until after the design phase, they had good negotiation and collaboration skills

and managed to make a success out of a difficult project. As summed up by the client “Wow,

that is pretty! Like this one. Good layout, good use of white spaces, good affordance for

options.” This team’s performance would most certainly have been much better if they were

afforded the same level of communication as provided to A teams by introducing their

counterpart roles at the beginning and via the Ripple instance. One team member concluded: “So

basically, communication was the root of all our problems. We didn’t have any extra problems

other than that I don’t think. […] [Because of the lack of communication we had to] put in a lot

of time [and effort to make this work]. Especially if we actually had the extra communication

[like A teams] it would have been even better. If we had time to exchange requirements with

each other, we could have actually fixed a lot of things that we had to spend time fixing later. In

favor of [your B team] hypothesis, as we said in the symposium presentation, communication

was definitely something we needed more of. I think the consensus we reached was that we

wished we were an A team.”

7.3.3.2 Team B1
Team B1 performed as we expected a B team would. They came last with respect to both value

index and feature count metrics. This was not surprising given that they were not able to

communicate with their counterpart role until two-thirds of the way into the semester and that

they did not get any messages from the Ripple Instance. We discuss how we think this lack of

communication and some other factors affected this team’s performance.

www.manaraa.com

 164

Differences in scope and vision between the two roles
The UE sub-team in Team B1, from the start, had a broad scope for the project. Their vision for

the system included, apart from the three core components of point-of-sale, inventory control,

and online preordering, designs for user donations for the Horticulture Club, virtual maps

showing where each plant category is located in the different greenhouses on the day of the sale,

redesigning of the existing Club’s website, news feeds about information that is of relevance to

the Club, and for events feature on the website for the Club to post information about upcoming

activities. This contrasted with a more modest scope adopted by the SE sub-team. As an SE team

member summarized: “So then once we actually started [interacting with the UE team] and

getting together we realized that the biggest problem that we had was, what we settled on the

term, tunnel vision. The SE side just went and had their own complete view of things and we

didn’t really consider the UE side of things as much and the same thing on the UE side. They had

their own design goals, own vision, and they didn’t really consider the SE side so it was pretty

much both ways.”

The broad scope of UE’s design further compounded an already difficult project given the

constraints associated with the B condition. As remarked by an SE member: “And then being a B

team, the enforced lack of communication, we felt, really hurt us. We could not come up with the

necessary views and ideas that we wanted just by having… like only [less than] half of the

semester to work with them. So that was really frustrating for all parts I think. Then, one of the

weirdest things for us was the scope of the design, we came into our first combined meeting

expecting to only having to do a point-of-sale, inventory, the standard stuff we talked about all

the semester, then they told us they wanted to rewrite the entire site as well as having a news site

events, and a whole host of different things.”

Interestingly, the two roles did not reach a quick decision to cut the non-essential requirements

but argued at length about the subtleties in the various non-essential features and why they the

views of the two roles were different. A UE member noted in her journal: “***** from the SE

group wanted to combine the "News" and "Events" sections into one, just for the sake of

efficiency. He thought that they were one and the same. The UE group's reasoning for having

them separate is that the "News" section would consist of articles written by club members or

any press [coverage] that the club receives, for example, through The Collegiate Times. The

www.manaraa.com

 165

"Events" section would let the public know about upcoming activities, speakers, etc. The issue

was whether "News" and "Events" are two different features. We discussed that if the club

members wanted a section for articles, then a "News" section would be appropriate. If only

upcoming events and other blurbs were to be used, then the two sections can be combined into

one. Terminology will need to be worked out at a later date.”

Interaction inertia
Similar to the effect noticed in Team B2, this team also appeared to have an initial inertia in

working with the counterpart role. Even small changes lead to resistance to a certain degree as

can be observed on one SE member’s journal entry: “[The] UE team came up with some

additions and changes to the layout and features. [These] changes are mostly minor and are in the

process of being effected. News of the changes was not really alarming but we didn't like it

much, especially since it was so late into the project that we were introduced to the UE team and

suddenly we ended up having to make changes. Extra work for us but we should be able to

accommodate most of the changes requested.”

Even though this inertia against embracing and adopting the counterpart role’s designs was not

very severe in either of the two B teams, the experimenter still detected it. It appears that in

situations where a team spends considerable amount of time and effort creating a product, they

tend to be attached to it and have trouble embracing opportunities for changes in that product,

even if it may be for the better. We quote here a philosophical discourse by one of the SE team

members: “As we approached the meeting with the UE group, there arose questions about

whether our design will be the one which is implemented or whether we will be forced to make

changes after discussing with the UE team. One of my team mates was kind of reluctant to meet

the UE group. Signs of conflict maybe… Although this is a more casual environment [compared

to the real-world], I could easily imagine the conflicts that may be prevalent in actual work

environments in the industry. Quite understandably, everyone wants their own design to be

implemented. No one wants their ideas to be snubbed, especially the B-teams who have done a

lot of work independently. It is quite plain to see that it is part of human nature to compete for

supremacy and it will not change, so maybe we can say that there is not going to be any end to

conflicts between different teams working together, more so in the actual workplace in the

industry.”

www.manaraa.com

 166

Territoriality issues and lack of respect for the counterpart role
Even though the two B teams were subject to similar constraints and resulting effects such as

interaction inertia, they handled them in different ways. Whereas Team B2 members quickly

shrugged off these problems and forged a professional partnership with their counterparts, Team

B1 struggled with territoriality issues and other inter-role communication problems. For

example, an SE team member unilaterally decided to make drastic changes to the UE’s hi-

fidelity prototype because she thought everyone in the team “could work together like one big

SE-UE family and thought [she] can tell [the UE team] ‘no this [design] doesn’t work because I

did UE [work] before for a company’.” Even though the UE role agreed that at least some of

these changes made the UE design better, there was a lot of resentment on the part of the UE

members. As one member recorded in her journal: “when we went to look at the prototype and

go over things with the SE Team, we found that the site had been completely changed!!!! *****

and the other [SE] guy had no knowledge of what happened. ***** had completely changed the

layout, color, pictures, flow and everything!!! I, along with my UE team members, were very

very very upset! And then to add on to that, she wasn’t even at the meeting today to explain

herself!!!!! [The] website […] now […] looks nothing like our prototype. Her SE members were

not informed about the changes and had no knowledge of it. I'm not sure there's a resolution [to

this problem] at the moment. ***** said that he would tell her to change the site back to the way

we had it, with our colors, layout, etc. The change made it seem like ***** from the SE team

completely disregarded the work that we had done and the implementation of what we had on the

website. Everything on there had a purpose, the colors, the font sizes, the flow, etc. and I feel like

she just wanted to ignore the usability/human factors side of this project. Also, it was not her job

to change anything on the front end!!! As part of the SE team, it is her job to only mess with the

backend!!! I'm so mad that she did that. I liked the way we had it before and it shouldn’t have

been changed, especially without asking anyone else or even notifying someone about it!!!”

Later on when asked about this in the group interviews, the UE roles responded: “It was the

manner in which they were changed, we did not know it was changed, that like apparently no

one knew about it!” with another UE member continuing “I felt that if there something that was

changed it should have been more of a group discussion type.”

www.manaraa.com

 167

It was not until much later in the semester that the two teams really started to collaborate

seriously and work with one another towards a common goal. However by then it was too late to

salvage the project.

Challenges arising from communication constraint
Similar to Team B2, Team B1 also faced numerous challenges from not knowing their

counterpart role’s status, which resulted in poor quality product. We quote an SE member’s

comments in his journal to illustrate some issues that arose because of this lack of

communication: “As a developer in the work force for the past 4 years, I have always designed

the backend with the eventual [UI] in mind. To not be able to talk with the UE team until 2/3

through the semester was a killer. As such, I feel our design was not as good as it could have

been because there were several things that came up that we had never thought of. Also, the

interface and the flow of the UE can play a fairly significant role in the design of the data

structures. Our own project suffered slightly in the fact that when our UE and SE teams came

together, the flow and the design they wanted forced a partial re-write of our database schema.

Due to time restraints, I couldn't redesign our backend as much as I would have liked and so I

was forced to do things I really didn't want to do, such as mixing JSP and Java code (mixes the

display code with the design) and also forcing certain beans and actions to behave in

unintentional ways to support everything. The biggest example that is still in the code is that we

went from having separate beans for the different data transactions to having one giant bean that

spread across everything. This was due to the overlap of functionality, or rather the lack of a

clear-cut border between different functions. As such, there is more interaction and ties between

objects than I would really like to see, but the time frame would not permit me the ability to

redesign from scratch.”

Similarly the UE role noted that there were times when having access to the counterpart role

would have been helpful in making a better UI. For example while designing for security

warnings and related messages on the UI, a UE role made this entry in his journal: “We are

concerned about our system security, and we believe we should talk to the engineers about what

options we could have for that, and how to design the system in a way to keep system security,

such as giving the user proper warning. Unfortunately, we can't solve this issue until far ahead

when we actually interact with the SE.”

www.manaraa.com

 168

Team problems and instructor intervention
Similar to Team C, the SE sub-team of Team B1 also had issues with a certain member not

performing his share of the work and with unprofessional behavior (e.g. not responding to emails

in a timely manner, not returning certain work products in a timely manner for integration into

project deliverables, etc.). This led to a frustrating experience for the other SE sub-team

members as reported in this journal entry: “[I] Spent some time with [experimenter], [SE class

GTA] and Dr. Arthur today to discuss what ***** and I have already concluded, which is that

we don't feel that ***** is pulling his weight in the group. In part, this is because of his initial

contribution to the SRS documentation where he was given the problem of tackling the

Behavioral Description and of the 4 pages he returned, ***** incorporated very little of the

information he presented. Again, when we asked him to look at the layered architecture and

break it down for the LLD document, he took 3 days to give us a diagram with no accompanying

text and which was in parts wrong and inaccurate. It was included in Thursday's deliverable as an

example of his contribution. I am now in the position of lightening his workload or giving him

his full weight and possibly sacrificing my grade. After speaking with [experimenter] and Dr.

Arthur, I was told to give him his full share of the workload and to address issues as they rise.

I'm getting frustrated. Our project has almost 50 JSP files and about a dozen java files and almost

all of them were done by me. ***** has taking over a week to get the simple stuff done so now

I'm backlogged doing his stuff when I was getting my stuff done on time. So now ***** and I's

[sic] grades will suffer because of this, even though I've done everything in my power to get him

to carry his weight. And now the [censored word] server hasn't reloaded any java I've uploaded

in the last 2.5 hours. So I can't even attempt to get the stuff done that ***** was eventually going

to have to get to. This is a facet of college life that I don't miss. It doesn't really help your study

at all, [experimenter], but it makes me feel better to vent.”

Team B1 summary
Team B1 was comprised of some competent members who had real-world software development

experience. However, they performed poorly in this study because of lack of communication

afforded by the B condition. They also had problems with each role having a different vision and

scope for the project and other territoriality issues. Further, the SE team had a problem member

www.manaraa.com

 169

who did not contribute as much as the rest causing unnecessary pressure in a project that was

already strained because of missing communication and unrealistic scope.

7.3.3.3 Comparing Team B1 and Team B2
Both these teams had formidable challenges due to lack of communication between the SE and

UE roles for two-thirds of the project duration. Similarly after introduction to their counterpart

role, they both had initial problems with embracing the idea of a joint-team with SE and UE

roles. However, Team B2 quickly (by their second meeting) succeeded in overcoming those

initial problems and started to collaborate. Team B1 on the other had territoriality issues and

could not form a cohesive joint-team until much later. Also, Team B2 negotiated the scope of the

project and prioritized how they would use their resources to complete the project. Team B1,

however, could not narrow their scope quickly enough to have at least a reasonable system for

the client.

7.3.3.4 Discussion of B condition
The lack of communication like that demonstrated in B teams seems to have a greater impact on

the SE role than the UE role. This is because they not only have to design a functional core

without any knowledge of how the UI would look or behave, but also have to accommodate UI

designs that were not communicated to them until after the SE design phase. On the other hand,

most of the challenges for the UE side appear to be related to negotiating with the SE role about

features that they deem important for better usability of the UI, and incorporating their formative

evaluation findings to the functional system.

Also, as evident in the case of Team B2, communication between the SE and UE roles is an

important requirement to have in an interactive-software development project, and it would have

improved the quality of their system drastically. However, the respect for the counterpart role,

willingness to work with them, and ability to negotiate and collaborate without ownership issues

and territoriality, are essential to the success of a project.

7.3.3.5 D teams
The performance of the D teams was another surprise in this study. We hypothesized that

because of the lack of SE inputs these teams would perform the worst. However, this lack of SE

input actually led to a constraint-free environment in which they were able to be creative and

www.manaraa.com

 170

create prototypes with broad designs and good aesthetics. Even though these teams only created

high-fidelity prototypes, with a lot of the envisioned functionality stubbed (which was not

counted in this analysis), they still managed to reach near the mean for both feature count and

value index (Figure 34 and Figure 35).

1056.25

841.50

732.50
664.25 648.00

535.25
467.75

377.25

Mean

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

A2 B2 D2 A1 D1 D3 C B1

Team

To
ta

l v
al

ue
 in

de
x

Figure 34: Total value index of all teams, showing relative standing of the D teams

Apart from a few comments during the high-fidelity prototyping stage of the UE process where

some members in D teams felt it would have been nice to have an SE role to help code the

prototype, they did not miss having an SE counterpart role. As one member from Team D2

remarked: “So far, I have not missed having an SE team working with us. I think we have a lot of

freedom in our project decisions, and I like that. We can focus our design on the usability goals.”

It appears that the only limiting factor for these teams was the prototyping platforms they choose

and their programming abilities on those platforms. In other words, these teams were free from

the constraints imposed by a counterpart SE role, the overhead associated with negotiating with

them, and other project management overheads such as scheduling meetings, but they had to do

their own programming (for the prototypes). As commented by a member in Team D2: “I think

in the beginning all [UE] groups [in all conditions] were in the same page [to create usable

products] but as things went on they would have to focus on the merging [their designs with SE]

thing [… while] when implementing [our prototypes] […] we were always trying to keep in

mind our usability goals. Like checkout. We wanted it to be fast. So not only providing the

www.manaraa.com

 171

functionality [in the prototype] but we always tried to remind ourselves what […][the clients]

need.”

147

118 117
110

91 90
98100

Mean

0

20

40

60

80

100

120

140

160

A2 A1 B2 D3 D1 D2 C B1

Team

N
um

be
r

of
 fe

at
ur

es

Figure 35: Total number of features per team, showing the relative standing of all D teams

This factor of not thinking about the SE implications resulting in broad and rich UI designs was

also detected in the case of Team B1, only in their case it acted as a detriment to the project

because of their later requirement to communicate and develop a fully functional system. An

excerpt from a conversation discussing this effect in Team B1 is provided here:

UE member 1: We kept thinking about the users and what the cool features they would like to

have. Like we wanted to have that map where they can say what plants are they in this

building, we had like the news feed, etc. If we thought about it from a different perspective

[which includes SE implications] we probably wouldn’t have done that.

UE member 2: For myself, I did not think about [SE implications]. I just cared about the UI and

[…] the usability issues […]

UE member 3: I agree with [UE member 2], I really did not think about the SEs. I really did not

know what the SEs can and can't do, what can be done and what is hard to do. So I don’t

know stuff about SE so I did not think that would probably take a long time.

www.manaraa.com

 172

UE member 4: For example we wanted to have something like a virtual tour. We asked ourselves

who would do it? But then we felt we should not restrict ourselves

Another aspect of D teams was that they seem to enjoy the process more than the joint-teams,

probably because of their creative freedom and lack of other project overheads. When asked

what condition they would prefer if they were to participate in a study like this again, most of the

D team members answered they would pick the same D condition again. When probed why, they

responded that the D condition afforded a level of pure perspective on designing a UI, and that

looking at all the challenges faced by the A, B, and C teams during the semester, they would

rather have a constraint-free and trouble-free condition like D.

7.3.3.6 D teams summary
The inherent lack of SE constraints in the D team seems to afford a level of freedom for the UE

role that resulted in creative and broad designs. Two of the most loved (by the clients) systems

out of all eight were designed by D teams. The clients liked Team D2’s design the best among all

eight systems and remarked “this is the coolest design. They had a very broad design, with a lot

of extra features such as zone map, etc. Their ‘add to cart’ is the best. The information is very

detailed. Love it. This is like the real thing. Wow. Unbelievable.” The clients also liked Team

D1’s prototype and made many positive comments on the aesthetics of the design and said

“looked like they listened to us and have a broad coverage of design, good layout, with

professional look and feel. Wonderful!”

7.3.3.7 Discussion on the D condition
Based on the client reactions to D team prototypes, experimenter observations, and the fact that

these teams created rich and broad designs seems to indicate that, in situations where there are

fewer project constraints and in designing exploratory or emergent systems, D teams provide a

good vision of what could be a good design. For example, if a company is attempting to create a

competitor to an existing market leader, using a constraint-free UE-only approach might set the

boundaries for what the product’s design should aim to achieve. In a way, D team designs seem

to have the potential to set the stage for what a successful product should be, and push the

boundaries of what is possible by the SE role. Using the same argument, it appears that this type

of development condition does not lend well to development of interactive systems which are not

ground-breaking and with limited project resources.

www.manaraa.com

 173

7.3.4 Hypothesis H2
The students in this class will have a better learning experience as pertaining to learning the

intricacies of interactive-software development than compared to traditional SE-only or UE-only

curricula. – verified

For this hypothesis we used the survey instrument to investigate whether students felt having a

joint-class was more valuable than as compared to the traditional SE- or UE-only classes. We

asked students in both classes to gauge their perceptions on this matter on a standardized

questionnaire. We present the results from these questions here. The first question asked the

students, based on their experience having a joint SE and UE class like the one in this study, to

rate if this experience was more valuable, same as, or less valuable than an independent SE or

UE class. We used the numerical values 3 for more valuable, 2 for neutral, and 1 for less

valuable. A one way ANOVA was performed on student response for value of joint course by

development condition and the results are shown in Figure 36. The differences in conditions

were not statistically significant.

Figure 36: Mean response (plus SE) for student perception of value in joint SE-UE curricula

The mean response across all students was 2.77 (out of 3), indicating that the students perceive

joint courses more valuable. Even though the mean for condition D is lower than other

conditions, the difference was not statistically significant. This lower mean for the D condition

could be explained by the fact that the student in this condition did not have the same first-hand

experience of working with the counterpart role and therefore the value for them was mostly

observational.

Level Number Mean Std Error
A 13 2.69 0.22
B 14 2.86 0.21
C 3 3.00 0.46
D 14 2.71 0.21

Mean of response = 2.77

Question options:
More valuable = 3
Neutral = 2
Less valuable = 1

Mean, 2.77

1

2

3

4

A B C D

Condition

M
ea

n
re

sp
on

se
 (V

al
ue

 in
 jo

in
t c

ou
rs

es
)

www.manaraa.com

 174

In another question we asked the students to rate their agreement to the statement: “Overall, I

learned more than I would in this class because of this “connected” offering of SE and UE

classes” using options strongly disagree, disagree, neutral, agree, and strongly agree. We used

numerical values of 1, 2, 3, 4, and 5 respectively for each of these options. A one way ANOVA

was performed on student response for learning in joint courses by development condition and

the results are shown in Figure 37. The differences in conditions were not statistically significant.

Figure 37: Mean response (plus SE) for student perception of learning in joint SE-UE courses

The mean response for this question across all students was 4.05 (out of 5) indicating that the

students perceive they learn more in joint SE-UE classes than in individual ones. Similar to the

previous question on value of joint classes, the mean response of D students to this question was

lower than those in joint conditions. Once again this could be explained by the fact that these

students did not have the first-hand experience in learning about the intricacies of interactive-

software development, rather they learned about it through observation and end-of-semester

symposium.

This difference in learning experience for different teams was also observed in another question

(rating scale inverted here for consistency with previous questions): “Based on the type of your

team (A, B, C, D) how would you rate your learning experience in this class (as opposed to what

you perceive members from other teams learned from their project)? (circle a number) Best 5 4 3

2 1 Worst.” A one way ANOVA was performed on student response for learning based on

development condition by development condition and the results are shown in Figure 38.

Level Number Mean Std Error
A 13 4.23 0.23
B 14 4.14 0.22
C 3 4.33 0.48
D 14 3.71 0.22

Mean of response = 4.05

Question options:
Strongly agree = 5
Agree = 4
Neutral = 3
Disagree = 2
Strongly disagree = 1

Mean, 4.05

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (L

ea
rn

ed
 m

or
e

in
 jo

in
t c

ou
rs

e)

www.manaraa.com

 175

Figure 38: Mean response (plus SE) for learning experience based on development condition

An all-pairs comparison of means using the Tukey-Kramer HSD was performed across

conditions. The analysis showed that there was significant difference between conditions A and

D, with students in the A condition rating their learning experience significantly higher than that

of the students in the D condition. Once again, this can be explained by the fact that the D teams

did not have first-hand experience with the issues involved working with a counterpart role.

However, the mean response for D team is 3.86 which is still above the normal learning

experience, if we assume a response of 3 to indicate the learning experience for a traditional UE-

only class.

7.3.4.1 Hypothesis H2 summary
As predicted, students taking joint offering of SE and UE appear to have a better learning

experience than traditional SE-only or UE-only classes. This was observed in UE-only teams as

well, indicating that even if students are not actively participating in a project with a counterpart

role, just being in a learning environment where different development conditions are adopted by

different teams and experiences shared at the end has a positive impact on the students’ learning.

7.4 Exploratory Aspects and Potential Quality Factors
In this section we discuss factors beyond those discovered as part of our investigation into the

hypotheses via the various instruments during the course of this exploratory study.

Level Number Mean Std Error
A 13 4.61 0.21
B 13 4.31 0.21
C 3 4.00 0.43
D 14 3.86 0.20

Mean of response = 1.77
Alpha = 0.1, F Ratio = 2.48, Problem>F = 0.0753

Level Mean
 D A 4.61
C A B 4.31
B A B 4.00
A B 3.86

Levels not connected by same letter are
significantly different (by Tukey-Kramer HSD)

Question options: Best 5 4 3 2 1 Worst

Mean, 4.23

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (l

ea
rn

in
g

ex
pe

rie
nc

e
ba

se
d

on

de
ve

lo
pm

en
t c

on
di

tio
n)

www.manaraa.com

 176

7.4.1 Need for a project leader
One factor that we found could impact the quality of an interactive-software development effort

is the presence of a project leader. As one Team B2 member remarked that it would be useful to

have “a project manager, someone more business related [who] probably checks on time

[schedules and] […] who can keep more the customers goals in mind as much as the software

engineering or usability engineering. One thing […] [that] will benefit [a project] is change

control, [because] a lot of time [one] […] don’t really understand what changes [one] […] need

to negotiate on, what features [one][…] need to actually go and implement, so having a third

party that kind of overlooks [those aspects] […] and lays down the communication between the

two teams to decide what sort of changes need to be put into the system will […] be quite

beneficial.” This factor was also identified by Team A1, when they said the presence of a project

leader or an active moderator would have corrected their problems in time. When asked in what

way a project leader would have helped where the Ripple instance messages have failed, the said

a project leader would be “active” as opposed to having “passive” messages from a Ripple

instance. One Team A1 member said: “I think a project manager would have helped. You know

that we were supposed to be sharing the responsibilities [and if only] […] somebody had said ‘I

am going to keep you people on task you are going to do this, you are going to do that’ it would

have worked much better [in correcting our problems in time].”

This desire for a project leader was also observed in a question in one of the surveys. When

asked to rate their agreement to this statement: “Having a project leader to oversee the two roles

and enforcing the design suggestions of each role would be” on a rating scale of very useful,

useful, will probably not make any difference, harmful, and very harmful, using the numerical

values of 5, 4, 3, 2, and 1 respectively. A one way ANOVA was performed on student response

for need for project leader by development condition and the results are shown in Figure 39. The

differences in conditions were not statistically significant.

www.manaraa.com

 177

Figure 39: Mean response (plus SE) for student perception of need for a project leader

The mean of response across all students was 4.22 (out of 5) indicating a preference to have a

project manager oversee the two activities of the two roles and to make sure that the

recommendations of each role are enforced. The mean response from students in the D condition

is less than the overall response but the difference is not significant. This lower preference by D

students can be explained by the fact that these students did not experience problems with

negotiation and other inter-role conflicts that were prevalent in other joint teams.

7.4.2 Usefulness of a Ripple-like frameworks
One of the overarching objectives of this study was to investigate the effectiveness of the Ripple

instance. However, because of various constraints imposed by the classroom setting, i.e. being

able to have only two teams use Ripple, we were not able to prove the effectiveness of Ripple

with team-level data. Therefore, we resorted to gathering perceptions of students in this class,

who were able to observe the various interactive-software development conditions first hand, to

assess the effectiveness of Ripple.

We covered three main communication aspects Ripple provides: coordination, constraint and

dependency checking, and synchronization. To assess the coordination value of Ripple

communication, we asked the students to rate their agreement to the statement “getting messages

informing you about your counterpart team’s activities and suggesting you have a representative

participate is important and useful” on a scale including strongly disagree, disagree, neutral,

agree and strongly agree, and using numeric values of 1, 2, 3, 4, and 5 respectively for each of

Level Number Mean Std Error
A 13 4.38 0.27
B 14 4.36 0.26
C 3 4.67 0.55
D 14 3.86 0.26

Mean of Response: 4.22

Question options:
Very useful = 5
Useful = 4
Will not make any difference = 3
Harmful = 2
Very harmful = 1

Mean, 4.22

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (p

er
ce

pt
io

n
on

 n
ee

d
fo

r p
ro

je
ct

le

ad
er

)

www.manaraa.com

 178

these options. A one way ANOVA was performed on student response on usefulness and

importance of coordination messages by development condition and the results are shown in

Figure 40. The differences in conditions were not statistically significant.

Figure 40: Mean response (plus SE) indicating student perception of usefulness and importance of
coordination messages

The mean of response across all students in the class was 4.3 (out of 5) indicating that the

students perceive coordination messages, like ones sent by Ripple instance, as useful and

important.

Similarly, to assess the constraint and dependency checking value of Ripple communication, we

asked the students to rate their agreement to the statement “getting periodic messages with

specific directives on consistency of design artifacts between the two roles is important (e.g.

Message saying ‘make sure all SE use cases are supported by the UE usage scenarios’)” on a

scale including strongly disagree, disagree, neutral, agree and strongly agree, and using numeric

values of 1, 2, 3, 4, and 5 respectively for each of these options. A one way ANOVA was

performed on student response on usefulness and importance of constraint and dependency

messages by development condition and the results are shown in Figure 41. The differences in

conditions were not statistically significant.

Level Number Mean Std Error
A 13 4.23 0.14
B 14 4.39 0.14
C 3 4.00 0.30
D 14 4.32 0.14

Mean of response: 4.3

Question options:
Strongly agree = 5
Agree = 4
Neutral = 3
Disagree = 2
Strongly disagree = 1

Mean, 4.3

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (p

er
ce

pt
io

n
on

 u
se

fu
ln

es
s

an
d

im
po

rta
nc

e
of

 c
oo

rd
in

at
io

n
m

es
sa

ge
s)

www.manaraa.com

 179

Figure 41: Mean response (plus SE) for student perception of usefulness and importance of constraint and
dependency messages

The mean of response across all students in the class was 4.06 (out of 5) indicating that the

students perceive messages informing constraint and dependency checking, like ones sent by

Ripple instance, as useful and important.

Also, to assess the synchronizing value of Ripple communication, we asked the students to rate

their agreement to the statement “Getting periodic messages with specific directives on what

work products need to be ready for the other role is important (e.g. Message saying ‘make sure

you have your UE screen designs ready because the SE role is going into implementation next

week’)” on a scale including strongly disagree, disagree, neutral, agree and strongly agree, and

using numeric values of 1, 2, 3, 4, and 5 respectively for each of these options. A one way

ANOVA was performed on student response on usefulness and importance of synchronization

messages by development condition and the results are shown in Figure 42. The differences in

conditions were not statistically significant.

Level Number Mean Std Error
A 13 3.85 0.16
B 14 4.04 0.15
C 3 4.00 0.33
D 14 4.29 0.15

Mean of response = 4.06

Question options:
Strongly agree = 5
Agree = 4
Neutral = 3
Disagree = 2
Strongly disagree = 1

Mean, 4.06

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (p

er
ce

pt
io

n
on

 u
se

fu
ln

es
s

an
d

im
po

rt
an

ce
 o

f c
on

st
ra

in
t a

nd
 d

ep
en

de
nc

y
m

es
sa

ge
s)

www.manaraa.com

 180

Figure 42: Mean response (plus SE) indicating student perception of usefulness and importance of
synchronization messages

The mean of response across all students in the class was 4.14 (out of 5) indicating that the

students perceive messages informing synchronization, like ones sent by Ripple instance, are

useful and important.

7.4.3 Pedagogical value of student personal journals
During the course of this study, we had a relatively fine-grained understanding of each team’s

activities and problems, how well they were doing, what problems they were facing, who among

the team members were not performing their share of the work, and who among the teams were

causing discord in the team. As an instructor or a teaching assistant of a course with a team

project we never before had this level of micro-understanding of each team and its member-

dynamics. The key reason we now gained this level of insight was the use of shared online

personal journals that each student was required to maintain as part of the study. Through these

journals, the experimenter was able to observe the progress of each team and identify problem

teams. Based on this information we were able to intervene into four teams and correct team

problems before too much damage was done. The nature of entries in these journals ranged from

insights into different aspects of the project, to experiences in real-life related to the content of

the course, therapeutic discourses on individual frustrations, comments about problem team

members, and even philosophical discussions on how SE and UE roles should or should not

interact. It was surprising how normal some of the problem teams appeared to be on the outside,

Mean, 4.14

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (p

er
ce

pt
io

n
on

 u
se

fu
ln

es
s

an
d

im
po

rt
an

ce
 o

f s
yn

ch
ro

ni
za

tio
n

m
es

sa
ge

s)

Level Number Mean Std Error
A 13 4.04 0.18
B 14 4.21 0.17
C 3 3.83 0.38
D 14 4.21 0.17

Mean of response = 4.14

Question options:
Strongly agree = 5
Agree = 4
Neutral = 3
Disagree = 2
Strongly disagree = 1

www.manaraa.com

 181

and when they were interacting with each other in classroom activities. But deep resentment and

grave problems were just a surface depth away. We believe this could be used as an effective

tool in a classroom setting to monitor and, if necessary, intervene into a team to correct

problems. However, the use of journals was not very well received by the students themselves

because of the extra overhead involved in maintaining them.

7.4.4 Use of real clients for group projects
Another pedagogical factor that seemed to motivate and interest the students in the class project

was the use of real clients. We quote members from Team A2: “it was really nice to work on a

meaningful project and actually have a client to go and talk to. Instead of having like this…

imaginary [or textbook description of a] person who we were supposed to pretend is somebody

who we are designing this product for. Being able to go there and get real feedback from was

really nice. [Member 2] It gave us a motivation and a reason to actually care about it. [Member

3] Yeah, that whole appreciation, that praise, from the client at the end of the meeting was

always a nice boost to our confidence.” We found that this preference to work on a real project

with a real client to be prevalent in all conditions. When we asked them to rate their agreement to

the statement “working with real clients for the class project made the learning experience

better” on a scale of strongly disagree, disagree, neutral, agree, and strongly agree, with

numerical values 1, 2, 3, 4, and 5 respectively. A one way ANOVA was performed on student

response on better learning experience because of real clients by development condition and the

results are shown in Figure 43. The differences in conditions were not statistically significant.

www.manaraa.com

 182

Figure 43: Mean response (plus SE) for student perception of better learning experience because of real
clients

The mean of response across all students in the class was 4.64 (out of 5) indicating that the

students perceive having a real client for the group projects to enhance their learning experience.

Similarly when we asked them to rate agreement to the statement “having real clients provided a

more realistic understanding of the requirements for the system” on the same scale as above. A

one way ANOVA was performed on student response on more realistic understanding of system

requirements because of real clients by development condition and the results are shown in

Figure 44. The differences in conditions were not statistically significant.

Figure 44: Mean response (plus SE) of student perception of more realistic understanding of system
requirements because of real clients

Level Number Mean Std Error
A 13 4.77 0.14
B 14 4.50 0.13
C 3 4.67 0.28
D 14 4.64 0.13

Mean of response = 4.64

Question options:
Strongly agree = 5
Agree = 4
Neutral = 3
Disagree = 2
Strongly disagree = 1

Mean, 4.64

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (p

er
ce

pt
io

n
on

 b
et

te
r

un
de

rs
ta

nd
in

g
of

 s
ys

te
m

 re
qu

ir
em

en
ts

 b
ec

au
se

of

 r
ea

l c
lie

nt
s)

Level Number Mean Std Error
A 13 4.69 0.14
B 14 4.71 0.13
C 3 4.67 0.29
D 14 4.50 0.13

Mean of response = 4.64

Question options:
Strongly agree = 5
Agree = 4
Neutral = 3
Disagree = 2
Strongly disagree = 1

Mean, 4.64

1.00

2.00

3.00

4.00

5.00

A B C D

Condition

M
ea

n
re

sp
on

se
 (p

er
ce

pt
io

n
on

 le
ar

ni
ng

ex

pe
ri

en
ce

 b
ec

au
se

 o
f r

ea
l c

lie
nt

s)

www.manaraa.com

 183

The mean of response across all students in the class was 4.64 (out of 5) indicating that the

students perceive having a real client for the group projects provides a more realistic

understanding of the requirements of the system.

7.4.5 Scheduling overhead in graduate programs
One interesting observation we made during the course of this study was regarding the

difficulties graduate students face with respect to scheduling group project meeting times. Given

the conflicting schedules of graduate students taking different classes in a university, almost all

team faced numerous scheduling challenges. Using the group email instrument, we computed the

percentage of communication units spent on scheduling during the entire duration of the project

as shown in Figure 45. We found that on average team spent about 17% of their overall

communication on scheduling alone.

Mean

0

5

10

15

20

25

30

35

A1 A2 B1 B2 C D1 D2 D3

Team

%
 o

f c
om

m
un

ic
at

io
n

sp
en

t o
n

sc
he

du
lin

g

Figure 45: Percentage of communication units spent on scheduling tasks per team

Given that many graduate classes entail some level of group work, each student could potentially

be spending about 17% of their time on scheduling per class. We believe this to be a high

overhead that could be avoided by making structural changes to the way graduate classes are

scheduled. Based on this observation, it appears that leaving a particular time of a week for

group project work only, and not scheduling any graduate classes during that period could

effectively solve this problem of unnecessary overhead.

www.manaraa.com

 184

7.5 Summary of Analyses and Results
In this chapter we discussed the different instruments we used in our exploratory study, the

challenges associated with each of those instruments, and the need to use combination of these

instruments for an exploratory study like this. We discussed each of our hypotheses and

associated data. Our hypothesis 1.a that C teams will perform the best because of their implicitly

high amount of communication was not verified. It appears that C teams suffer from conflict of

interest and cognitive dissonance because of the need to play dual-roles in a project. Our

hypothesis 1.b that A teams will perform better than B teams because of better communication in

A teams was partially verified. It appears that respect for counterpart role and the willingness to

work with them preempts the need for communication in an interactive-software development

environment. Our hypothesis 1.c that B team will perform better than D teams because of the

contributions of an SE role in B condition was not verified. It appears that the lack of SE

participation actually helps D teams create broader and richer designs for the UI. However, the

practicality of such an approach to interactive-software development effort could not be

investigated in this study. Our hypothesis 2 that students taking cross-pollinated SE and UE

courses will have a better learning experience compared to SE-only and UE-only courses was

verified. Students did report that they had a better insight into the intricacies of interactive-

software development efforts.

www.manaraa.com

 185

8 Conclusions

8.1 Introduction
In this chapter we summarize the key findings from the exploratory study described in Chapter 7.

These findings are derived from experimenter observations and a variety of instruments

discussed in Section 7.2. Given that the study was exploratory in nature and that there were at

most three teams per condition, these findings were typically not statistically significant.

However, almost all of these findings are supported by qualitative data that was derived from

multiple instruments in the study.

8.2 Importance of Communication and Usefulness of Ripple
Framework

As demonstrated by the most successful team (i.e. one with best overall value index, most

number of features, and chosen by clients for deployment) in the study (Team A2), a Ripple-like

framework appears to foster critical communication required for the success of an interactive-

software development effort. Most students, based on their experience in this study, opined that a

framework like Ripple is useful. This opinion was especially strong in students from B teams

where communication was constrained until the design phase was completed. Also, the

experimenter observed various instances during the study when Ripple-like communication

messages played a key part in bringing the SE and UE roles together and where the lack of such

messages created costly problems. As a counter example, B teams demonstrated that a lack of

early communication, which Ripple fosters, between the SE and UE roles creates serious

problems in the context of interactive-software development.

8.3 Inherent Conflict of Interest in Dual Experts
Interactive-software development endeavors where the same developers perform both SE and

UE activities (C condition in the study) appear to suffer from an inherent conflict of interest with

respect to doing justice to different aspects of UI design for a system. Because dual-role

personnel are responsible for both UI design and UI software implementation, there is a strong

risk of their limiting the UI design to features that are easy to implement and not necessarily

those that make better interaction design. It appears that having individual roles for the SE and

www.manaraa.com

 186

UE life cycles mitigates this problem by providing a system of checks and balances within which

UE roles champion the need for usability of features without a concern about ease of

implementation.

In contrast, at other extreme of development conditions are the UE-only (D) teams where the

developers focus on UI design alone. The lack of SE constraints during the design process in

these teams seems to afford broad and rich UI designs which are only limited by the prototyping

platform used and the prototyping skills of the UE role. Also, there was less communication

overhead involved in these teams as they did not have the need to communicate with an SE role.

This lower workload combined with the creative freedom inherent to this condition led to

students enjoying the process more than other conditions. However, developing interactive

software using this condition runs the risk of major surprises when the UI prototypes are handed

over to the SE role for implementation due to platform and architectural constraints. Therefore it

appears that developing interactive software using the D condition is more suitable for

innovative products rather than traditional systems.

8.4 Factors that Preempt Communication
One of the key lessons learned in the study was how absolutely important communication among

the SE and UE roles was for the success of an interactive-software development project.

However, as Team B2 demonstrated, high-quality personnel, competence, motivation, and

initiation can often overcome any challenge, even a lack of communication. Even though lack of

communication in a project can be surmounted by a team with such exceptional abilities, the

study indicates that the resulting quality of the product and process could be even higher for such

teams when there is early and frequent communication.

In the study we also discovered that two factors can preempt the importance of communication

in a negative way. One of these factors is lack of respect for the counterpart role that should

come from an understanding about the effort each member is putting into the project. Teams that

respected the abilities and skills of the counterpart role and deferred the design decisions of the

corresponding life cycle to that role created better products and had better process experiences

than those without. The second such factor is a lack of willingness to work with the counterpart

www.manaraa.com

 187

role. As demonstrated by Team A1, having ability to communicate is not useful if one role is not

willing to work with the other.

8.5 Inertia of Interaction Between Roles That Come
Together Late in the Project

As demonstrated in the B condition, when groups of developers begin a project by working in

isolation from their counterpart roles, the roles experience difficulties in working with each other

when brought together later in the project. Because of the inertia of their initially interacting with

only their own role, team members are likely to resist sharing or relinquishing control of their

work when they finally do have to collaborate with a counterpart team. The lack of a shared

history prior to integration leads to territoriality and resentment of the other team. The longer the

sub-teams work independently the more ownership they attach to their designs, causing them to

be even less willing to change or compromise, even if those changes are for the better. Also,

working in isolation with only one perspective (UE or SE) for an extended period of time runs

the risk of developers having a tunnel vision of the design, often missing out on a broader

perspective. Therefore, it appears that ensuring periodic communication between the two life

cycles from the beginning is essential to foster overall team cohesion in interactive-software

development endeavors. Such team cohesion allows the two roles to establish, agree upon, and

understand the UI design implications on the software architecture and implementation platform

and vice versa. Having early and frequent communication between the two roles also, of course,

facilitates agreement on the overall system requirements and scope.

8.6 Need for Unbiased Project Leader
One of the recurring issues observed in all joint teams in the study was the need for negotiation

between the SE and UE roles about scope and feasibility of different features. Given the tight

coupling of UI and backend in an interactive-software system, the need for such negotiation and

feasibility analysis is inevitable. However, because each role invests significant amount of time

and effort into developing their own component (UI or backend), there appears to be a certain

level of territoriality and inability to compromise when changes have to be made to a role’s

design. Having an unbiased project manager with good leadership skills and a holistic view of

the project can help resolve the SE-UE issues quickly. Most students in the study opined that

www.manaraa.com

 188

having such a project leader would have helped them in resolving issues that consumed a

significant amount of time in argument.

8.7 Importance of Cross-Pollinated SE-UE Courses
Based on experimenter observations and student perceptions in the study, joint SE-UE courses

are more valuable and facilitate a better learning experience about the ways these roles must

work together in interactive-software development. Simulating different conditions for

developing interactive software seems to illustrate the tradeoffs and challenges associated with

each condition, and semester-long projects seem to provide firsthand knowledge about the

challenges and advantages of each condition.

www.manaraa.com

 189

References

Allgood, C., The Claims Library Capability Maturity Model: Evaluating a Claims Library,
Masters Thesis, Department of Computer Science, Virginia Polytechnic Institute and
State University (Virgina Tech), Blacksburg, (2004).

Alsumait, A., Seffah, A. and Radhakrishnan, T., Use case maps: A roadmap for usability and
software integrated specification. Proc. IFIP World Computer Conference, (2002), 119-
131.

Ambler, S.W., What is(n't) agile modeling, (2002),
http://www.agilemodeling.com/essays/whatIsAM.htm, Last accessed Sep 10, 2007.

Ambler, S.W., What is agile modeling (AM)?, (2004),
http://www.agilemodeling.com/index.htm, Last accessed Sep 10, 2007.

Atkinson, G., Hagemeister, J., Oman, P. and Baburaj, A., Directing software development
projects with product metrics. Proc. 5th. International Symposium on Software Metrics,
(1998), 193-204.

Barbosa, S.D.J. and de Paula, M.G., Interaction modeling as a binding thread in the software
development process. Proc. Workshop on Bridging the Gaps Between Software
Engineering and Human-Computer Interaction at International Conference on Software
Engineering (ICSE '03), (2003), 84-91.

Barghouti, N.S., Supporting cooperation in the Marvel process-centered SDE. Proc. Fifth
Software Engineering Symposium on Practical Software Development Environments,
(1992), 21 - 31.

Barnes, J. and Leventhal, L., Turning the tables: Introducing software engineering concepts in a
user interface design course. Proc. 32nd SIGCSE Technical Symposium on Computer
Science Education, (2001), 214-218.

Basili, V.R. and Weiss, D., A methodology for collecting valid software engineering data. IEEE
Transactions on Software Engineering, Vol.SE-10 (6), (1984), 728-738.

Basili, V.R. and Rombach, H.D., The TAME project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering, Vol.14 (6), (1988), 758-
753.

Basili, V.R., Briand, L.C. and Melo, W.L., A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering, Vol.22 (10), (1996),
751-761.

Bass, L.J. and John, B.E., Supporting Usability Through Software Architecture. IEEE Computer,
Vol.34 (10), (2001), 113-115.

Bass, L.J. and John, B.E., Linking usability to software architecture patterns through general
scenarios. The Journal of Systems and Software, Vol.66, (2003), 187-197.

Beck, K., Embracing change with extreme programming. IEEE Software, Vol.32 (10), (1999),
70-77.

www.manaraa.com

 190

Beck, K., Extreme programming explained: Embrace change. Addison-Wesley, 2000.

Bevan, N. and Azuma, M., Quality in use: incorporating human factors into the software
engineering lifecycle. Proc. Third IEEE International Software Engineering Standards
Symposium and Forum: 'Emerging International Standards', (1997), 169-179.

Bevan, N. and Bogomolni, I., Incorporating user quality requirements in the software
development process. Proc. 4th International Software & Internet Quality Week
Conference (QWE2000), (2000).

Bharat, K.A. and Hudson, S.E., Supporting distributed, concurrent, one-way constraints in user
interface applications. Proc. 8th annual ACM symposium on user interface and software
technology (UIST), (1995), 121-132.

Blomberg, J.L., Ethnography: Aligning field studies of work and system design. in Monk, A.F.
and Gilbert, N. eds. Perspectives on HCI: Diverse approaches, Academic Press, London,
(1995), 175-198.

Boehm, B.W., Software Engineering Economics. Prentice-Hall, Inc., Englewood Cliffs, 1981.

Boehm, B.W., Verifying and validating software requirements and design specifications. IEEE
Software, Vol.1 (1), (1984), 75-88.

Boehm, B.W., A spiral model of software development and enhancement. IEEE Computer,
Vol.21 (5), (1988), 61-72.

Boehm, B.W., Get ready for agile methods with care. IEEE Computer, Vol.35 (1), (2002), 64-
69.

Borning, A. and Duisberg, R., Constraint-based tools for building user interfaces. ACM
Transactions on Graphics (TOG), Vol.5 (4), (1986), 345-374.

Bosch, J., Design and use of software architectures: Adopting and evolving a product line
approach. Pearson Education, Addison-Wesley, 2000.

Bridging the gaps between software engineering and human-computer interaction. Proc.
International Conference on Software Engineering 2003, (2003a).

Bruegge, B. and Dutoit, A.H., Communication metrics for software development. Proc. 19th
International Conference on Software Engineering, (1997), 271-281.

Bush, V., As we may think. Atlantic Monthly, Vol.176, (1945), 101-108.

Card, S.K., Moran, T.P. and Newell, A., The keystroke-level model for user performance time
with interactive systems. Communications of ACM, Vol.23 (7), (1980), 396-410.

Card, S.K., Newell, A. and Moran, T.P., The psychology of human-computer interaction. L.
Erlbaum Associates, 1983.

Carroll, J.M., Rosson, M.B., Chin Jr., G. and Koenemann, J., Requirements development in
scenario-based design. IEEE Transactions on Software Engineering, Vol.24 (12),
(1998), 1156-1170.

Chidamber, S.R. and Kemerer, C.F., A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, Vol.20 (6), (1994), 476-493.

www.manaraa.com

 191

Chok, S.S. and Marriott, K., Automatic construction of user interfaces from constraint multiset
grammars. Proc. 11th IEEE International Symposium on Visual Languages, (1995), 242-
249.

Click & Pledge, Click And Pledge, (2007), http://www.clickandpledge.com/, Last accessed Sep
10, 2007.

Closing the Gaps: Software Engineering and Human-Computer Interaction. Proc. Interact 2003
Workshop, (2003b).

Constantine, L.L., Essential Modeling: Use cases for user interfaces. Interactions, Vol.2 (2),
(1995), 34-46.

Constantine, L.L. and Lockwood, L.A.D., Software for use: A practical guide to the models and
methods of usage-centered design. Addison Wesley Longman, Inc., 1999.

Cook, J.E., Votta, L.G. and Wolf, A.L., Cost-effective analysis of in-place software processes.
IEEE Transactions on Software Engineering, Vol.24 (8), (1998), 650-663.

Cook, T.D. and Campbell, D.T., Quasi-experimentation: Design and analysis issues for field
settings. Houghton Mifflin Company, 1979.

da Silva, P.P. and Paton, N.W., Improving UML support for user interface design: A metric
assessment of UMLi. Proc. Workshop on Bridging the Gaps Between Software
Engineering and Human-Computer Interaction at International Conference on Software
Engineering (ICSE '03), (2003), 76-83.

DeMarco, T. and Boehm, B.W., The Agile Methods Fray. IEEE Computer, Vol.35 (6), (2002),
90-92.

Deursen, A.v., Customer involvement in extreme programming. Proc. Workshop On Customer
Involvement (WCI'2001), (2001).

Dix, A., Finlay, J., Abowd, G.D. and Beale, R., Human-Computer Interaction Pearson Prentice
Hall, 2004.

Douglas, S., Tremaine, M., Leventhal, L., Wills, C.E. and Manaris, B., Incorporating human-
computer interaction into the undergraduate computer science curriculum. Proc. 33rd
SIGCSE Technical Symposium on Computer Science Education Conference Proceedings,
(2002), 211-212.

Draper, S.W. and Norman, D.A., Software Engineering for User Interfaces. IEEE Transactions
on Software Engineering, Vol.SE-11 (3), (1985), 252-258.

Duncan, A.S., Software development productivity tools and metrics. Proc. The 10th
International Conference on Software Engineering, (1988), 41-48.

Duncan, R., The quality of requirements in extreme programming. CROSS TALK The journal of
defense software engineering, Vol.June, (2001), 19-22.

Ege, R.K., Constraint-based user interfaces for simulations. Proc. 20th conference on winter
simulation, (1988), 263-271.

Emam, K.E., Moukheiber, N. and Madhavji, N.H., An empirical evaluation of the G/Q/M
method. Proc. The 1993 conference of the Centre for Advanced Studies on Collaborative
research: software engineering - Volume 1, (1993), 265-289.

www.manaraa.com

 192

Facebook, (2007a), http://www.facebook.com/, Last accessed Sep 10, 2007.

Faculty ONLINE: The information source for higher education, (2007b),
http://www.facultyonline.com, Last accessed Sep 10, 2007.

Fenton, N.E. and Pfleeger, S.L., Software metrics: A rigorous and practical approach.
International Thomson Computer Press, 1997.

Fenton, N.E. and Neil, M., Software metrics: roadmap. Proc. Conference on The Future of
Software Engineering, (2000), 357-370.

Ferre, X., Juristo, N., Windl, H. and Constantine, L.L., Usability basics for software developers.
IEEE Software, Vol.18 (1), (2001), 22-29.

Ferre, X., Integration of Usability Techniques into the Software Development Process. Proc.
Workshop on Bridging the Gaps Between Software Engineering and Human-Computer
Interaction at International Conference on Software Engineering (ICSE '03), (2003), 28-
35.

Forbus, K.D., Qualitative process theory. in Bobrow, D.G. ed. Qualitative reasoning about
physical systems, The MIT Press, (1985), 85-168.

Glass, R.L., Extreme programming: the good, the bad, and the bottom line. IEEE Software,
Vol.18 (6), (2001), 111-112.

Hanson, W., User engineering principles for interactive systems. Proc. AFIPS Conference
Proceedings 39, Fall Joint Computer Conference, (1971), AFIPS Press, 523-532.

Hartson, H.R. and Hix, D., Toward empirically derived methodologies and tools for human-
computer interface development. International Journal of Man-Machine Studies, Vol.31,
(1989), 477-494.

Henderson-Sellers, B., OO software process improvement with metrics. Proc. Sixth IEEE
International Symposium on Software Metrics, (1999), 2-8.

Herbsleb, J.D. and Grinter, R.E., Conceptual simplicity meets organizational complexity: Case
study of a corporate metrics program. Proc. The 20th International Conference on
Software Engineering, (1998), 271-280.

Hix, D. and Hartson, H.R., Developing user interfaces: Ensuring usability through product &
process. John Wiley & Sons, Inc., 1993.

Horrian, H., Mahmud, S. and Karthikeyan, S., Requirements engineering in agile methods,
(2003), http://sern.ucalgary.ca/courses/CPSC/601.93/F2003/papers/AgileRE.pdf, Last
accessed Sep 10, 2007.

IEEE recommended practice for software requirements specifications IEEE Std 830 Software
engineering standards committee of the IEEE computer society, (1998).

IEEE/EIA 12207.1 Software life cycle processes--Life cycle data Standard for Information
Technology, (1997).

Information Processing Systems--Open Systems Interconnection--LOTOS--A Formal
Description Technique Based on the Temporal Ordering of Observational Behavior ISO
8807, (1989).

www.manaraa.com

 193

Joeris, G., Change management needs integrated process and configuration management. Proc.
6th European conference held jointly with the 5th ACM SIGSOFT, (1997), 125--141.

Juristo, N., Lopez, M., Moreno, A.M. and Sanchez, M.I., Improving software usability through
architectural patterns. Proc. Workshop on Bridging the Gaps Between Software
Engineering and Human-Computer Interaction at International Conference on Software
Engineering (ICSE '03), (2003), 28-35.

Kääriäinen, J., Koskela, J., Takalo, J., Abrahamsson, P. and Kolehmainen, K., Supporting
requirements engineering in extreme programming: managing the user stories. Proc.
16th International Conference on Software & Systems Engineering and their
Applications (ICSSEA 2003), (2003).

Krasner, G.E. and Pope, S.T., A cookbook for using the model-view-controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming, Vol.1 (3), (1988),
26-49.

Krauskopf, R. and Rash, F., Independent verification and validation. IEEE Potentials, Vol.9 (2),
(1990), 12-14.

Kwaiter, G., Gaildrat, V. and Caubet, R., Modelling with constraints: a bibliographical survey.
Proc. 1998 IEEE Conference on Information Visualization, (1998), 211 - 220.

Landauer, T.K., The trouble with computers. Usefulness, usability, and productivity. The MIT
Press, London, England, 1995.

Latzina, M. and Rummel, B., Soft(ware) skills in context: Corporate usability training aiming at
cross-disciplinary collaboration. Proc. 16th Conference on Software Engineering
Education and Training, (2003), 52-57.

Leonardi, M.C. and Leite, J.C.S.d.P., Using business rules in extreme requirements. Proc. The
Fourteenth International Conference on Advanced Information Systems Engineering
(CAiSE'02), (2002), Springer-Verlag, 420-435.

Leventhal, L. and Barnes, J., Two for one: Squeezing human-computer interaction and software
engineering into a core computer science course. Computer Science Education, Vol.13
(3), (2003), 177-190.

Lewis, R.O., Independent verification and validation: A life cycle engineering process for quality
software. John Wiley & Sons, Inc, 1992.

Li, W., Software product metrics. IEEE Potentials, Vol.18 (5), (Dec 1999-Jan 2000), 24-27.

Licklider, J.C.R., Man-computer symbiosis. IRE Transaction on Human Factors in Electronics,
Vol.HFE-1, (1965), 4-11.

MailTags, MailTags 2.0, (2007), http://www.indev.ca/MailTags.html, Last accessed Sep 10,
2007.

Mantei, M.M. and Teorey, T.J., Incorporating behavioral techniques into the systems
development life cycle. Management Information System (MIS) Quarterly, Vol.13 (3),
(1989), 257-276.

www.manaraa.com

 194

Matejka, R.M. and Lagnese, T.J., A representational language for qualitative process control.
Proc. 1st international conference on Industrial and engineering applications of
artificial intelligence and expert systems (1998), Vol.1, 475 - 482

Mayhew, D.J., Principles and guidelines in software user interface design. Prentice Hall,
Edgewood Cliffs, NJ, 1992.

McCauley, R., Resources for teaching and learning about human-computer interaction. Inroads;
ACM SIGCSE Bulletin, 35 (2), (2003), 16-17.

Mugridge, W.B., Hosking, J.G. and Grundy, J., Towards a constructor kit for visual notations.
Proc. Sixth Australian Conference on Computer-Human Interaction, (1996), 169-176.

Myers, B.A. and Rosson, M.B., Survey on user interface programming. Proc. CHI '92, (1992),
195-202.

MySpace: a place for friends, (2007c), http://www.myspace.com/, Last accessed Sep 10, 2007.

Newman, W.M. and Lamming, M.G., Interactive System Design. Addison-Wesley, 1995.

Nielsen, J., Usability Engineering. Academic Press, Cambridge, MA, 1993.

Norman, D.A., The psychology of everyday things. Basic Books, New York, 1988.

Orkut, (2007d), www.orkut.com, Last accessed Sep 10, 2007.Newell, A. and Simon, H.A.,
Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ, 1972.

Paetsch, F., Eberlein, A. and Maurer, F., Requirements engineering and agile software
development. Proc. Twelfth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE '03), (2003), 308-313.

Parsons, H., What happened at Hawthorne? Science, Vol.183, (1974), 922-932.

Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C., Capability Maturity Model for Software,
Version 1.1, Software Engineering Institute, Carnegie Mellon University (CMU/SEI-93-
TR-24), Pittsburgh, PA, (1993).

Pawar, S.A., A common software development framework for coordinating usability engineering
and software engineering activities, Masters Thesis, Department of Computer Science,
Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, (2004).

Pew, R.W., Evolution of Human-Computer Interaction: From MEMEX to Bluetooth and beyond.
in Jacko, J.A. and Sears, A. eds. The Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies and Emerging Applications, Lawrence Erlbaum
Associates, Inc., (2003), 1-17.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T., Human-Computer
Interaction. Addison Wesley, Wokingham, UK, 1994.

Pressman, R.S., Software engineering: A practitioner's approach. McGraw-Hill, 2001.

Purao, S. and Vaishnavi, V., Product metrics for object-oriented systems. ACM Computing
Surveys (CSUR), Vol.35 (2), (2003), 191-221.

Pyla, P.S., Pérez-Quiñones, M.A., Arthur, J.D. and Hartson, H.R., Towards a model-based
framework for integrating usability and software engineering life cycles. Proc. Interact
2003 Workshop on "Closing the Gaps: Software Engineering and Human Computer

www.manaraa.com

 195

Interaction", (2004a), Université catholique de Louvain, Institut d' Administration et de
Gestion (IAG) on behalf of the International Federation for Information Processing
(IFIP), 67-74.

Pyla, P.S., Pérez-Quiñones, M.A., Arthur, J.D. and Hartson, H.R., What we should teach, but
don't: Proposal for a cross pollinated HCI-SE curriculum. Proc. Frontiers in Education
(FIE) Conference, (2004b), S1H17-22.

Pyla, P.S., Pérez-Quiñones, M.A., Arthur, J.D. and Hartson, H.R., Ripple: An event driven
design representation framework for integrating usability and software engineering life
cycles. in Seffah, A., Gulliksen, J. and Desmarais, M. eds. Human-centered software
engineering: Integrating usability in the software development lifecycle, Springer, (2005),
245-265.

Rakitin, S.R., Software Verification and Validation for Practitioners and Managers. Boston
Artech House, Inc., 2001.

Rosson, M.B. and Carroll, J.M., Integrating task and software development for object-oriented
applications. Proc. SIGCHI conference on Human factors in computing systems, (1995),
377-384.

Rosson, M.B., Integrating development of task and object models. Communications of ACM,
Vol.42 (1), (1999), 49-56.

Rosson, M.B. and Carroll, J.M., Usability Engineering: Scenario-based development of human-
computer interaction. Morgan Kaufman, San Francisco, 2002.

Royce, W.W., Managing the development of large scale software systems. Proc. IEEE Western
Electronic Show and Convention (WESCON) Technical Papers (Reprinted in
Proceedings of the Ninth International Conference on Software Engineering, Pittsburgh,
ACM Press, 1989, pp.328--338), (1970), Vol.14 (Session A), A/1 1-9.

Seffah, A., Learning the ropes: Human-centered design skills and patterns for software engineers'
education. Interactions, Vol.10 (5), (2003), 36-45.

Selby, R.W., Porter, A.A., Schmidt, D.C. and Berney, J., Metric-driven analysis and feedback
systems for enabling empirically guided software development. Proc. 13th International
Conference on Software Engineering, (1991), 288-298.

Shepard, T., Sibbald, S. and Wortley, C., A visual software process language. Communications
of ACM, Vol.35 (4), (1992), 37-44.

Shepperd, M., An evaluation of software product metrics. Information and Software Technology,
Vol.30 (3), (1988), 177-188.

Shepperd, M., Products, processes and metrics. Information and Software Technology, Vol.34
(10), (1992), 674-680.

Shneiderman, B., Direct manipulation: A step beyond programming languages. IEEE Computer,
Vol.16 (8), (1983), 57-62.

Shneiderman, B., Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison Wesley Longman, Inc., 1998.

www.manaraa.com

 196

Sousa, K.S. and Furtado, E., RUPi - A unified process that integrates human-computer
interaction and software engineering. Proc. Workshop on Bridging the Gaps Between
Software Engineering and Human-Computer Interaction at International Conference on
Software Engineering (ICSE '03), (2003), 41-48.

Szekely, P. and Myers, B.A., A user interface toolkit based on graphical objects and constraints.
Proc. Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA '88), (1988), 36-45.

Tate, G. and Verner, J., Software metrics for CASE development. Proc. Fifteenth Annual
International Computer Software and Applications Conference, (1991), 565-570.

The Joint Task Force on Computing Curricula, Software engineering 2004 - Curriculum
guidelines for undergraduate degree programs in software engineering Computing
Curricula Series, IEEE Computer Society and Association for Computing Machinery,
(2004).

The Standish Group, The CHAOS Report, (1994).

The Standish Group, Unfinished Voyages. A follow-up to The CHAOS Report, (1995).

The Standish Group, CHAOS: A Recipe for Success, (1999).

The Standish Group, Extreme CHAOS, (2001).

Usability and Software Engineering Cross-Pollination: The Role of Patterns. Proc. Interact 2003
Workshop, (2003c).

Veer, G.V.d. and Vliet, H.V., The human-computer interface is the system: A plea for a poor
man's HCI component in software engineering curricula. Proc. 14th Conference on
Software Engineering Education and Training, (2001), 276-288.

Wahl, N.J., Student-run usability testing. Proc. 13th Conference on Software Engineering
Education and Training, (2000), 123-131.

Wallace, D.R. and Fujii, R.U., Software verification and validation: An overview. IEEE
Software, Vol.6 (3), (1989), 10-17.

Weiser, M., The computer for the 21st century. Scientific American, 265 (3), (1991), 66-75.

Weiser, M., Some computer science issues in ubiquitous computing. Communications of ACM,
Vol.36 (7), (1993), 75-84.

Weiser, M., The world is not a desktop. Interactions, Vol.1 (1), (1994), 7-8.

Widmaier, J., Smidts, C. and Huang, X., Producing more reliable software: mature software
engineering process vs. state-of-the-art technology? Proc. The 22nd International
Conference on Software Engineering, (2000), 88-93.

www.manaraa.com

 197

Appendix A: SE Demographic Survey

CS 5704: Software Engineering Demographic Survey

Please fill out this questionnaire if you wish to be placed on a CS5704 project development team. This information
will be used to place you in a team with as balanced a make-up as possible.

Your name (last, first)___
Your major__________________________Email____________________________________

Dropping this class will handicap your project team and prevent another student who is interested in taking this
class. To the best of your knowledge, are you now 100% committed to staying in this course and participating in a
project development team? _____yes _____no

This particular offering of CS5704 is coordinated with CS/ISE5714 (Usability Engineering) and will involve an
external research study to collect data concerning communication among students (including Usability Engineering
students) for the team project. This aspect of the course will not affect your learning opportunities or your grades.
While we would appreciate your cooperation in this study, we offer the chance to opt out and not participate.
Opting out also will not affect your grades. Please indicate your choice by checking one of the lines below:
____ I agree to participate in the communication study.
____ I wish to opt out from the communication study.

I will use the following demographic information to assign you to a team, so that each team will have a good
balance of skills and backgrounds. Please mark the point on each scale that best represents you.

Programming and software implementation skills:
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Real-world experience in software development:
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Previous human factors and/or HCI education/experience:
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Writing, especially technical writing, skills (in English!):
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Other knowledge, skills, attributes you have that are relevant to a software development project:

Anything else I should know regarding your placement on a team:

Are you officially registered for this course yet? If not, what is your situation?

Signature (confirming above information) ___

Specify nature of education/
experience: _____________

Specify number of years/
nature of job: ____________

Language(s) most proficient
(e.g., Java): ____________

www.manaraa.com

 198

Appendix B: UE Demographic Survey

CS/ISE 5714: Usability Engineering Demographic Survey

Please fill out this questionnaire if you wish to be placed on a CS5714 project development team. This information
will be used to place you in a team with as balanced a make-up as possible.

Your name (last, first)___
Your major______________________________ Email____________________________________

To the best of your knowledge, are you now 100% committed to staying in this course and participating in a project
development team? _____yes _____no

This particular offering of CS/ISE5714 is coordinated with CS5704 (Software Engineering) and will involve an
external research study to collect data concerning communication among students (including Software Engineering
students) for the team project. This aspect of the course will not affect your learning opportunities or your grades.
While we would appreciate your cooperation in this study, we offer the chance to opt out and not participate.
Opting out also will not affect your grades. Please indicate your choice by checking one of the lines below:
____ I agree to participate in the communication study.
____ I wish to opt out from the communication study.

I will use the following demographic information to assign you to a team, so that each team will have a good
balance of skills and backgrounds. Please mark the point on each scale that best represents you.

Previous human factors and/or HCI education/experience:
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Programming and software implementation (e.g., Java) skills:
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Real-world experience in software development:
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Writing, especially technical writing, skills (in English!):
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
None Weak Average/Medium Strong Very strong

Other knowledge, skills, attributes you have that are relevant to an interface development project:

Anything else I should know regarding your placement on a team:

Are you officially registered for this course yet? If not, what is your situation?

Signature (confirming above information) ___

www.manaraa.com

 199

Appendix C: Questionnaire Pertaining to Project Experience

Team number: ________________

1. What role did you play in this project? SE UE Both (C teams)

2. Please characterize your HCI/human factors experience, prior to your experience in this class.

 Professional background – real-world and other usability experience (circle one):

None Weak Average/Medium Strong Very strong
Did not

know what
HCI was

Knew what HCI
was about but

not many details

Knowledgeable about HCI
and processes, used HCI

principles in a project or two

Knowledgeable with 1-
2 years of experience in

an HCI-related job

Expert with 3 or more
years experience in an

HCI-related job

 Educational background (circle one):

None Weak Average/Medium Strong Very strong
Did not

know what
HCI was

Knew what HCI
was about but

not many details

Took an introductory
undergraduate HCI

class

Took more than one
HCI class that had

semester-long projects

Had many HCI
classes, research

work is HCI-related

3. Please characterize your software engineering experience, prior to your experience in this class.

 Professional background – real-world and other software development experience (circle one):

None Weak Average/Medium Strong Very strong
Did not

know what
SE was

Knew what SE
was about but

not many details

Knowledgeable about SE
and processes, used SE

principles in a project or two

Knowledgeable with 1-
2 years of experience in
software development

Expert with 3 or more
years experience in

software development

 Educational background (circle one):

None Weak Average/Medium Strong Very strong
Did not

know what
SE was

Knew what SE
was about but

not many details

Took an introductory
undergraduate SE class

Took more than one SE
class that had semester-

long projects

Had many SE
classes, research

work is SE-related

4. Please characterize your programming and software implementation experience (e.g., C#, Java, web
development).

None Weak Average/Medium Strong Very strong
No

programming
skills

Knew some
programming but

never used in a project

Knew programming
and used in one or two

small projects

Knew programming and
used in more than three

projects

Professional
programmer, do this

(or have done this) for
a living

Background information

www.manaraa.com

 200

Taking into account your experiences associated with your class project in working with your counterpart role in this
study (or being the counterpart role yourself if you are a C or D team member), please answer the following
questions.
A teams, please answer these questions with respect to your direct experiences (and conjecture where applicable)
on getting coordination and communication messages and other forms of help (all the email messages you got over
the semester directing you to attend your counterpart role’s meetings, get your particular work products checked for
consistency, etc.).
B teams, please answer these questions based on conjectures and your experience of not getting help A teams got.
If you feel there are particular cases where certain aspects discussed here would have helped (e.g. getting a message
like this would have helped prevent such and such) please describe them here.
C and D teams, please answer these questions based on your observations this semester, and your own personal
experiences working on this project as a C or D team. Most of your comments will be pure conjecture but your best
guesses will still be very valuable.

5. Based on the type of your team (A, B, C, D), how aware were you about your counterpart role’s goals for the
system? (Circle a number rating)

Aware 1 2 3 4 5 Not aware

6. Based on the type of your team (A, B, C, D), how aware were you about your counterpart role’s project
status (e.g. how much has been accomplished at each point in time) for the system? (Circle a number)

Aware 1 2 3 4 5 Not aware

7. What percentage of the work done by you and your counterpart role do you think overlaps (to the extent that it
would save time and resources if done together as a single group like the C team)?

Less than 15% 15-40% 40-60% 60-85% greater than 85%

8. To what extent did your previous professional/other experience interfere with your designated role?

Highly interfered Somewhat interfered No effect

9. Did your previous professional/other experience support your designated role?

Greatly helped Helped Neutral Did not help that much Did not help at all

10. Were there any conflicts with your counterpart role because of your previous professional/other experience?

Many conflicts Some conflicts No conflicts Previous experience helped prevent conflicts

11. How did your previous professional/other experience help in understanding your counterpart role’s
responsibilities and duties (select on from each row below)?

Greatly helped Helped Neutral Did not help that much Did not help at all
I was able to appreciate their expertise,
skill, work load, design challenges, etc.

 I was frustrated they were doing such a poor
job, I could have done better

Issues with SE and UE connections

www.manaraa.com

 201

12. Having a project leader to oversee the two roles and enforcing the design suggestions of each role would be:

Very useful Useful Will probably not make any difference Harmful Very Harmful

13. As you interacted with your counterpart roles, how did the following factors affect your role?

 Differences in terminology.

Very confusing Confusing There were no differences Easy to understand

 Differences in iterativeness.

Very frustrating Frustrating Neutral Satisfying Very Satisfying

 Susceptibility to change.

Very frustrating Frustrating Neutral Satisfying Very Satisfying

 Differences in the way each role represents their designs/work products.

Problematic Did not have an effect There were no differences Affected positively

14. How often did your counterpart role influence your design?

Very often Often Few times Rarely Never

15. With respect to improving the quality of your overall system, your counterpart role’s influence was:

Very positive Positive Did not influence either way Detrimental Very Detrimental

16. Based on the type of your team (A, B, C, D), how would you rate having effective communication between
the two roles with respect to maintaining the quality of the product (software system you created)?

Very positive Positive Did not influence either way Detrimental Very Detrimental

17. Based on the type of your team (A, B, C, D), how would you rate having effective communication between
the two roles with respect to maintaining the quality of the development process?

Very positive Positive Did not influence either way Detrimental Very Detrimental

18. Having communication between the SE and UE roles as provided to A teams is important.

Strongly disagree Disagree Neutral Agree Strongly Agree

19. Having communication between the SE and UE roles as provided to A teams is useful.

Strongly disagree Disagree Neutral Agree Strongly Agree

20. Having communication between the SE and UE roles as provided to A teams unduly complicates the total
process.

Strongly disagree Disagree Neutral Agree Strongly Agree

21. Having communication between the SE and UE roles as provided to A teams increases overall workload for
both roles.

Communication factors and experiences

www.manaraa.com

 202

Strongly disagree Disagree Neutral Agree Strongly Agree

22. Lack of communication between the SE and UE roles as experienced by B teams creates serious problems
for the overall project effort.

Strongly disagree Disagree Neutral Agree Strongly Agree

23. Lack of communication between the SE and UE roles as experienced by B teams increases overall workload
for both roles at the end.

Strongly disagree Disagree Neutral Agree Strongly Agree

24. The overall quality of the product created from B teams would have improved if they were provided with the
communication that was afforded to A teams.

Strongly disagree Disagree Neutral Agree Strongly Agree

25. The overall quality of the process as experienced by B teams would have improved if they were provided with
the communication that was afforded to A teams

Strongly disagree Disagree Neutral Agree Strongly Agree

26. Having group email IDs for the SE and UE sub-teams helps with communication of related concerns (e.g. the
sub-team was able to be aware of what the current status of their part of the project was).

Strongly disagree Disagree Neutral Agree Strongly Agree

27. Having a combined email ID that includes SE and UE roles helps with communication of concerns relating to
the total system.

Strongly disagree Disagree Neutral Agree Strongly Agree

28. If we were to repeat this study again and you were given a choice to pick a particular group to be in, what would
you pick? Answer this question with respect to overall quality of the system not amount of work involved.

A team B team C team D team
Have a counterpart role with

communication
Without communication Play both roles yourself No counterpart team, only

SE or UE
Briefly explain why:

29. Based on the type of your team (A, B, C, D), how would you rate your overall experience working on this
project?

Very frustrating Frustrating Neutral Satisfying Very Satisfying

30. Being a dual expert like those in C team increases overall workload for the overall project effort.

Strongly disagree Disagree Neutral Agree Strongly Agree

31. Being a dual expert like those in C team helps in having a broader and richer design for overall system.

Team factors and experiences

www.manaraa.com

 203

Strongly disagree Disagree Neutral Agree Strongly Agree

32. Being in a D team (without a counterpart team) helps in being creative with the design without worrying about
feasibility, implementation, or other constraints.

Strongly disagree Disagree Neutral Agree Strongly Agree

33. Being in a D team (without a counterpart team) has the least amount of work as they did not have to worry
about the counterpart team.

Strongly disagree Disagree Neutral Agree Strongly Agree

34. In this study each role had different deliverables and timelines for various phases of project. This was:

Very problematic Problematic Did not affect the quality of system Good Very good

35. Having combined project deliverables (e.g. SE’s requirements plus UE’s ethnography as single report) would
have helped achieve a more cohesive and higher quality system than having them as separate documents.

Strongly disagree Disagree Neutral Agree Strongly Agree

36. Having combined project grades (e.g. one grade for “requirements” which includes SE’s requirements and
UE’s ethnography) would have helped achieve a more cohesive and higher quality system than having them
graded separately.

Strongly disagree Disagree Neutral Agree Strongly Agree

37. How would you rate your counterpart team’s performance on this project?

Excellent Good Fair Poor Horrendous

38. How would you rate your experience working with your counterpart team?

Enlightening Informative Did not learn anything new Waste of time

39. When you are doing an activity relevant to your role (e.g. UE doing ethnography or SE doing requirements
engineering), having a representative from the other team is important.

Strongly disagree Disagree Neutral Agree Strongly Agree

40. When you are doing an activity relevant to your role (e.g. UE doing ethnography or SE doing requirements
engineering), having a representative from the other team is useful.

Strongly disagree Disagree Neutral Agree Strongly Agree

41. When you are doing an activity relevant to your role, having a representative from the other team provides
insights to the overall project that we would have missed otherwise.

Strongly disagree Disagree Neutral Agree Strongly Agree

42. When you are doing an activity relevant to your role, having a representative from the other team provides a
better understanding of what is feasible (constraints between SE and UE designs).

Coordination factors and experiences

www.manaraa.com

 204

Strongly disagree Disagree Neutral Agree Strongly Agree

43. Getting messages informing you about your counterpart team’s activities and suggesting you have a
representative participate is important.

Strongly disagree Disagree Neutral Agree Strongly Agree

44. Getting messages informing you about your counterpart team’s activities and suggesting you have a
representative participate is useful.

Strongly disagree Disagree Neutral Agree Strongly Agree

45. Making sure that the design artifacts from the SE and UE roles are consistent is important.

Strongly disagree Disagree Neutral Agree Strongly Agree

46. Making sure that the design artifacts from the SE and UE roles are consistent is useful.

Strongly disagree Disagree Neutral Agree Strongly Agree

47. Getting periodic messages with specific directives on consistency of design artifacts between the two roles is
important (e.g. Message saying “make sure all SE use cases are supported by the UE usage scenarios”).

Strongly disagree Disagree Neutral Agree Strongly Agree

48. Getting periodic messages with specific directives on consistency of design artifacts between the two roles is
useful (e.g. Message saying “make sure all SE use cases are supported by the UE usage scenarios”).

Strongly disagree Disagree Neutral Agree Strongly Agree

49. Having periodic checkpoints where both roles sit together and make sure they are in sync is important

Strongly disagree Disagree Neutral Agree Strongly Agree

50. How often did you have to wait for your counterpart role’s work products before you could proceed with
your work activity?

Very often Often Sometimes Rarely Never

51. How did such delay waiting for your counterpart role’s work products affect your work activities?

Was highly detrimental Was somewhat detrimental No effect Was actually helpful

52. How often did you encounter situations where you wish you knew what your counterpart role was doing so you
could make informed decisions about your own process?

Very often Often Sometimes Rarely Never

Synchronization issues and experiences

Constraint and dependency checks and experiences

www.manaraa.com

 205

53. Getting periodic messages with specific directives on what work products need to be ready for the other role is
important (e.g. Message saying “make sure you have your UE screen designs ready because the SE role is
going into implementation next week”).

Strongly disagree Disagree Neutral Agree Strongly Agree

54. Getting periodic messages with specific directives on what work products need to be ready for the other role is
useful (e.g. Message saying “make sure you have your UE screen designs ready because the SE role is going
into implementation next week”).

Strongly disagree Disagree Neutral Agree Strongly Agree

55. What are the most important lessons you have learned participating in this experiment?

Other

www.manaraa.com

 206

Appendix D: Questionnaire Pertaining to Joint SE-UE Course
Experience

Questionnaire for evaluating joint offering of SE and UE classes

1. Which class were you in? (circle one) SE UE Both

2. Maintaining personal journals to record everyday project activities and experiences was very time consuming

Strongly disagree Disagree Neutral Agree Strongly Agree

3. Maintaining personal journals to record everyday project activities and experiences was useful to record the

progress of a project

Strongly disagree Disagree Neutral Agree Strongly Agree

4. Maintaining personal journals to record everyday project activities and experiences helped in reconstructing

what happened with the project later on

Strongly disagree Disagree Neutral Agree Strongly Agree

5. Based on my experience this semester, I would maintain a journal for all my future projects.

Strongly disagree Disagree Neutral Agree Strongly Agree

6. Having group IDs for the sub-teams and overall teams was helpful

Strongly disagree Disagree Neutral Agree Strongly Agree

7. Having group IDs for teams was overwhelming with the amount of communication

Strongly disagree Disagree Neutral Agree Strongly Agree

8. I would recommend group IDs for future group projects

Strongly disagree Disagree Neutral Agree Strongly Agree

9. Have you taken a class/have experience in your counterpart team’s area before this semester? (e.g. if you are

a UE role, have you taken SE classes or have SE experience)

Yes No

10. Based on your experience/answer from above question, having a joint SE and UE class like this is (circle one)

[More valuable Neutral Less valuable] than having the classes offered
independently.

11. Overall, I learned more than I would in this class because of this “connected” offering of SE and UE classes

Strongly disagree Disagree Neutral Agree Strongly Agree

12. Overall, I prefer taking a class the regular way that is not connected like this

Strongly disagree Disagree Neutral Agree Strongly Agree

13. Working with real clients for the class project made the learning experience better

Team type (circle one): A B C D

www.manaraa.com

 207

Strongly disagree Disagree Neutral Agree Strongly Agree

14. Having structured meetings with clients as planned/arranged by the GTA was better than having to contact

them ourselves

Strongly disagree Disagree Neutral Agree Strongly Agree

15. Having real clients provided a more realistic understanding of the requirements for the system

Strongly disagree Disagree Neutral Agree Strongly Agree

Were there any problems with having real clients? Briefly explain:

16. Having a single set of deliverables for both SE and UE would have made the learning experience better

Strongly disagree Disagree Neutral Agree Strongly Agree

17. Having a symposium at the end of the semester helped learn from others’ experiences

Strongly disagree Disagree Neutral Agree Strongly Agree

18. Based on this experience, I would prefer courses which have an end-of-semester symposium

Strongly disagree Disagree Neutral Agree Strongly Agree

19. Having the class follow the entire development life cycle from requirements to evaluation afforded a better

learning experience than classes with projects which go only a part of the way.

Strongly disagree Disagree Neutral Agree Strongly Agree

20. (This question for SE students only) Having constraints on the development platform helped
Strongly disagree Disagree Neutral Agree Strongly Agree

Any comments:

21. Based on the type of your team (A, B, C, D) how would you rate your learning experience in this class (as

opposed to what you perceive members from other teams learned from their project)? (circle a number)

Best 1 2 3 4 5 Worst

22. Based on your experience in this unique offering of the two classes, what can be done differently to improve

such an offering the next time?

www.manaraa.com

 208

Appendix E: IRB Informed Consent and Approval

Informed Consent Form

Virginia Polytechnic Institute and State University

Informed Consent for Participant of Investigative Project

Title of Project: Evaluation of the Ripple Software Development Framework

Investigators: H. Rex Hartson and Pardha S. Pyla

I. THE PURPOSE OF THIS RESEARCH
As described in the presentation by Pardha S. Pyla, the objective of this study is to evaluate the
Ripple framework.

II. PROCEDURES
Graduate students from CS5714-Usability Engineering class will be treated as UE experts and
CS5704-Software Engineering students will be treated as SE experts. We will form two types of
six-member teams: the first type will have students will single expertise where three experts are
from the UE class and three from SE class. The second type of team will have dual-experts:
students enrolled in both classes. Of all the single-expertise teams, half will use the Ripple
framework and the other half will use a framework that is representative of how interactive
software is currently developed in the real world. The dual expertise teams will use Ripple
framework. All the students in both classes will be required to maintain a journal of the total
number of hours spent in working on this project individually, working with teams, and other
project related attributes (e.g. number of defects discovered in the project, number of changes
resulting due to the functional and user interface components, etc.). Each team will be assigned a
group email and will be required to use it for all project related communication. These email
exchanges will be analyzed for themes after the end of the semester. The software systems
developed will be evaluated at the end of the semester for various quality metrics. At the end of
the semester, the students will be asked to fill out questionnaires about their experience in the
class. All data collected in this study will be kept annonymous and the students will be informed
at the start of the semester about this study. THE GRADES OF THE STUDENTS WILL NOT
BE AFFECTED BY PRODUCTS THEY CREATE OR THEIR ANSWERS TO
QUESTIONAIRES OR JOURNALS. THEY WILL ONLY BE EVALUATED FOR THE
PROCESS THEY USED (WHICH IS THE SAME FOR ALL TYPES OF TEAMS) TO
CREATE THESE PRODUCTS.

All information that you help us attain will remain anonymous.

III. RISKS
There are no physical or emotional risks associated with this experiment.

IV. BENEFITS OF THIS PROJECT

www.manaraa.com

 209

Your participation in this project will provide information that will be used to improve the
understanding of the advantages of using a framework such as Ripple in developing interactive
software systems. No guarantee of benefits has been made to encourage you to participate. You
may receive a synopsis summarizing this research when completed.
You are requested to refrain from discussing your experiences with other members outside your
assigned team till the end of the semester to prevent any undue biases.

V. EXTENT OF ANONYMITY AND CONFIDENTIALITY
The results of this study will be kept strictly confidential. Your written consent is required for
the researchers to release any data identified with you as an individual to anyone other than
personnel working on the project. The information you provide will have your name removed
and only a subject number will identify you during analyses and any written reports of the
research.
Only your replies to study questions will be used in the research. At no time will the direct use of
your name or personal data be made. Data will be stored securely and will be made available
only in the context of research publications and discussion. No reference will be made in oral or
written reports that could link you to the data nor will you ever be identified as a participant in
the project. All data gathered will have your name removed and only a user number will identify
each user during analyses and any written reports of the research.

VI. COMPENSATION
Your participation is voluntary and unpaid.

VII. FREEDOM TO WITHDRAW
You are free to withdraw from this study at any time for any reason and without penalty.

VIII. APPROVAL OF RESEARCH
This research has been approved, as required, by the Institutional Review Board for projects
involving human subjects at Virginia Polytechnic Institute and State University, and by the
Department of Computer Science.

IX. PARTICIPANT’S RESPONSIBILITIES
I voluntarily agree to participate in this study, and I know of no reason I cannot participate. I will
keep the activities and information discussed confidential from students outside my assigned
team.

X. PARTICIPANT’S PERMISSION
I have read and understand the informed consent and conditions of this project. I have had all
my questions answered. I hereby acknowledge the above and give my voluntary consent for
participation in this project. If I participate, I may withdraw at any time without penalty. I agree
to abide by the rules of this project

Signature Date

www.manaraa.com

 210

Name (please print) Contact: Phone/Address/Email (Optional)

Should I have any pertinent questions about this research or its conduct, I may contact:

Investigator e-mail
Pardha S. Pyla ppyla@vt.edu

Faculty Advisor Telephone/e-mail
Dr. H. Rex Hartson 540 231 4857/ hartson@cs.vt.edu

IRB Chair of the Institutional Review
Board for the Protection of Human Subjects Telephone/e-mail
Dr. David Moore (540) 231-4358/moored@vt.edu,

www.manaraa.com

 211

IRB Approval for Study:

www.manaraa.com

 212

IRB Continuation Approval for Further Analyses:

www.manaraa.com

 213

Appendix F: Sample Journal Entries

Individual hours:

Date
Individual

hours Description
08/29/06 1 Wrote initial overview document
08/30/06 0.5 Edited overview document
… … …

Group hours:

Unexpected changes:

Date

Brief
description
of change Cause for change

Resolution if
any Comments

09/25
/06

Clients need
to be able to
discount
plants on
POS.

Clients discount plants when
they are not selling well or
want to get rid of inventory.
This was not mentioned
before by clients and the
team had never questioned
the clients about discounts.

Resolved: POS
will be added
with discount
option on each
plant and
overall
discount.

I am not sure if this is a
requirement we should
have detected earlier or
something that clients
just remembered.
Whose fault is it? or
nobodys?

… … … … …

Issues with SE-UE interaction:

Date Brief description of issue
Underlying
cause

Resolution
if any Comments

10/25
/2006

Once again we are having a
lot of problems with the SE
Team responding our emails
in attempts to meeting

Not sure Respond
already.

Once again, becoming a
pain to schedule everyone
together.

… … … … …

Other experiences:

Date Experience Insight
9/12/
2006

***** signed up to do a significant amount of
Project 2 saying he has time to do it & he
doesn't know how much he can contribute to
Project 3

This kind of flexibility is ok with me but
makes me a little nervous to rely on just
one person to get a bulk of the info done.

Date
Group
hours

Team members
present Description

08/28/06 0.75 SE team Pre-client-meeting meeting
08/28/06 0.25 SE team, client reps Initial client meeting
… … … …

www.manaraa.com

 214

Appendix G: Group Project Timetable and Schedule

 Usability Engineering Software Engineering
W
ee
k #

D
a
y Date Topic

Project
Deadlines Topic Project Deadlines

T
22-
Aug Introduction, Life Cycle Introduction

1

R
24-
Aug

Life Cycle, Systems
Analysis, product concept
statement SE Models

T
29-
Aug

Systems Analysis,
exercises

RE Elicitation and
Analysis

2

R
31-
Aug Design

Project 1:
Topic, Client,
and Product
Concept
Statement

Requirements
engineering
(verification and
validation)

T 5-Sep
Scenarios & Screen
Design, exercise Triage

Project 1:
Product overview
document

3

R 7-Sep

Scenarios & Screen
Design show & tell (in
class project), Benchmark
Tasks, Usability
Specifications Specification

T
12-
Sep

High-level Design
(Arch style, Data
design, DFD, I/O) 4

R
14-
Sep

Rapid Prototyping,
exercise

Project 2:
Systems
Analysis

T
19-
Sep

Project 2:
Requirements
(SRS)

5

R
21-
Sep

Usability evaluation
(Intro), Usability
evaluation (Before data
collection), Usability
evaluation (During data
collection)

Project 3a: High-
level design

T
26-
Sep

Usability evaluation
(During data collection),
Critical incident training
exercise (individual),
Camtasia screen
recording demo

Low-level Design
(Component
decomposition, Test
Description,
Document) 6

R
28-
Sep

Introduction to the HCI
(Usability Methods Lab),
DCART UE-support tools
demo, Data collection
demo (The NY Ticket
Kiosk)

Project 3:
Scenarios,
Screen Design,
and Early
Prototype

7
T 3-Oct

Usability evaluation
(During data collection)
team exercise

www.manaraa.com

 215

R 5-Oct

Usability evaluation (After
data collection), team
exercise

Project 3b:
Design document
(Both high-level
and low-level)

T
10-
Oct

In-class exercise Kiosk
RP & evaluation show &
tell Advanced topics 8

R
12-
Oct

Team (outside) project
prototype demos (in-class
overview)

T
17-
Oct

User Action Framework,
design guidelines

Project 4: High-
Fidelity
Prototype and
Usability
Specifications

9

R
19-
Oct

T
24-
Oct

Usability guidelines
exercises, Usability
Inspection 10

R
26-
Oct Web usability

Project 4: Code
deliverable

T
31-
Oct Usability problem analysis

11

R 2-Nov

Project 5:
Formative
Usability
Evaluation

T 7-Nov 12
R 9-Nov

T
14-
Nov

13

R
16-
Nov Open

Project 6:
Design
Iteration

Project 6: User
acceptance test

Thanksgiving break

T
28-
Nov

Review and Faculty
Evaluation (attendance
required)

Project 8: Team
Member
Evaluations 14

R
30-
Nov

Symposium in 110 KWII
2:00PM to 5:00PM

Project 7: Oral
Presentations

Symposium in 110
KWII 2:00PM to
5:00PM

Project 7: Oral
Presentations

T 5-Dec Day OFF
15 ~

-
~

11 Dec 7:45 AM: Final
exam

08 Dec 7:45AM:
Final exam

www.manaraa.com

 216

Appendix H: Curriculum Vita

PARDHA SARADHI PYLA
Education

 Doctor of Philosophy, Computer Science, Virginia Tech ‐ Blacksburg, VA Fall 2007
Advisor: Dr. Rex Hartson GPA: 3.82/4
Dissertation: Connecting the usability and software engineering life cycles through a communication‐
fostering software development framework and cross‐pollinated computer science courses

 Graduate Certificate, Human‐Computer Interaction, Virginia Tech ‐ Blacksburg, VA Dec 2006
 Master of Science, Computer Science, Virginia Tech ‐ Blacksburg, VA May 2006
 Master of Science, Computer Engineering, Virginia Tech ‐ Blacksburg, VA May 2002
 Bachelor of Technology, Electronics & Commn. Engg., Nagarjuna University, India May 1999
 Diploma, Network‐Centered Computing, NIIT, India July 1998

Areas of Specialization and Competence
Human‐Computer Interaction (HCI), Usability Engineering, Software Engineering and Design

Selected Technical Skills

Development techniques: Ethnographic analysis, business process modeling, user‐class analysis,
task analysis, design/usage scenarios, screen designs, rapid prototyping, usability evaluation
techniques

Design methodologies, frameworks, and architectures: Star life cycle for Usability Engineering, User
Action Framework (a structured knowledgebase of usability concepts), Model View Controller
(MVC), Scenario‐Based Design

Refereed Publications

 Ball, R., Pyla, P.S. and Pérez‐Quiñones, M.A. OSI and ET: Originating Source of
Information and Evidence Traceability. Proc. of the CHI 2007 work‐in‐progress, 2007

 Pyla, P.S., Hartson, H.R., Arthur, J.D., Smith‐Jackson, T.L. and Pérez‐Quiñones, M.A. Evaluating
Ripple: Experiences from a Cross Pollinated SE‐UE Study. Proc. of the CHI 2007 Workshop on
Increasing the Impact of Usability Work in Software Development, 2007

 Tungare, M., Pyla, P.S., Sampat, M., Pérez‐Quiñones, M.A., Syncables: A Framework to Support
Seamless Data Migration across Multiple Platforms; Proc. of the IEEE International Conference on
Portable Information Devices, IEEE Portables 2007.

 Howarth, J., Pyla, P.S., Yost, B., Haciahmetoglu, Y., Young, D., Ball, R., Lambros, S. and Layne, P.,
Designing a conference for women entering academe in the sciences and engineering. Advancing
Women in Leadership (AWL), vol. 24, (2007).

 Pyla, P.S., Pérez‐Quiñones, M.A., Arthur, J.D. and Hartson, H.R., Ripple: An event driven design
representation framework for integrating usability and software engineering life cycles. In Seffah,
A., Gulliksen, J. and Desmarais, M. eds. Human‐centered software engineering: Integrating usability in
the software development lifecycle, Springer, (2005), 245‐265.

www.manaraa.com

 217

 Tungare, M., Pyla, P.S., Miten, S. and Pérez‐Quiñones, M.A. Defragmenting Information with the
Syncables Framework. Proc. of the 2nd Invitational Workshop on Personal Information Management at
SIGIR 2006, (2006).

 Pyla, P.S., Tungare, M. and Pérez‐Quiñones, M.A., Multiple user interfaces: Why consistency is
not everything, and seamless task migration is key. Proc. of the CHI 06 Workshop on The Many Faces
of Consistency in Cross‐Platform Design, (2006).

 Pyla, P.S., Howarth, J.R., Catanzaro, C. and North, C., Vizability: A Tool for usability engineering
process improvement through the visualization of usability problem data. Proc. of the 44th ACM
Southeast Conference (ACMSE), (2006), 620‐625.

 Tungare, M., Pyla, P.S., Glina, V., Bafna, P., Balli, U., Zheng, W., Yu, X. and Harrison, S.,
Embodied data objects: Tangible Interfaces to Information Appliances. Proc. of the 44th ACM
Southeast Conference (ACMSE), (2006), 359‐364.

 Pyla, P.S., Pérez‐Quiñones, M.A., Arthur, J.D. and Hartson, H.R., What we should teach, but
donʹt: Proposal for a cross pollinated HCI‐SE curriculum. Proc. of the Frontiers in Education (FIE)
Conference, (2004), S1H17‐22.

 Chen, J., Pyla, P.S. and Bowman, D.A., Testbed evaluation of navigation and text display
techniques in an information‐rich virtual environment. Proc. of the IEEE Virtual Reality, (2004),
181‐188.

 Bowman, D.A., North, C., Chen, J., Polys, N.F., Pyla, P.S., and Yilmaz, U., Information‐rich virtual
environment: Theory, tools, and research agenda. Proc. of the ACM Virtual Reality Software and
Technology, Oct 2003, 81‐90.

 Pyla, P.S., Pérez‐Quiñones, M.A., Arthur, J.D. and Hartson, H.R., Towards a model‐based
framework for integrating usability and software engineering life cycles. Proc. of the Interact 2003
Workshop on ʺClosing the Gaps: Software Engineering and Human Computer Interactionʺ, (2003),
Université catholique de Louvain, Institut dʹ Administration et de Gestion (IAG) on behalf of the
International Federation for Information Processing (IFIP), 67‐74.

Publications ready for submission/under review

 Tungare, M., Pyla, P.S., Pérez‐Quiñones, M.A., and Harrison S., Personal Information Ecosystems
and Implications for Design, 2007

 Pérez‐Quiñones, M.A., Tungare, M., Pyla, P.S. and Kurdziolek, M., A Special Topics Course on
Personal Information Management

 Pyla, P.S., Tungare, M., Holman, J. and Pérez‐Quiñones, M.A., Continuous UIs for seamless task
migration in MPUIs: Bridging task‐disconnects. (Presented at the Human Computer Interaction
Consortium, HCIC 2006)

 Bohner, S., George, B., Pyla, P.S., and McCrickard, S. Model‐Based Evolution for Change Tolerant
Web Software.

Professional Distinctions and Activities

 Outstanding Doctoral Student for College of Engineering, Virginia Tech, 2007
 Citizen Scholar Award, Graduate Student, Virginia Tech, 2007
 Best In Show and Crowd Favorite, Creative Design Contest, Graduate School, Virginia Tech, 2007
 First Place, Photography Category, Graduate Life Center Art and Photography Contest, Graduate

School, Virginia Tech, Fall 2007

www.manaraa.com

 218

 Member, Graduate Student of the Year Selection Committee, Graduate School, Virginia Tech,
2007

 Recipient of $400 Graduate Research Development Project Award from Graduate Student
Assembly, Virginia Tech, Fall 2006

 First Place, Photography Category, Graduate Life Center Art and Photography Contest, Graduate
School, Virginia Tech, Fall 2006

 First Place in Engineering, Interactive demo and poster presentation, Embodied data objects: Tangible
Interfaces to Information Appliances, 22nd Annual Research Symposium and Exposition, Graduate
School, Virginia Tech, 2006

 Technical Reviewer, CHI (2007), Frontiers in Education (FIE 07), Software Quality Journal (2006),
2nd Latin American Conference on Human‐Computer Interaction (2005)

 Featured Graduate Student of the Month, Graduate School, Virginia Tech March, 2005
 Deanʹs List for Outstanding Instructors/Teaching Excellence from the College of Engineering,

Virginia Tech, Summer 2004
 Graduate Student Representative to the Faculty, Dept. of Computer Science, Virginia Tech, 2004
 Secretary of the Interior, Graduate Council, Dept. of Computer Science, Virginia Tech, 2004/2005
 Computer Science Graduate Representative to the Graduate Student Assembly, Virginia Tech,

2004‐2007
 Graduate Council Mentor to new graduate students, Dept. of Computer Science, Virginia Tech,

2004

Professional and Academic Experience

SoF Program Coordinator, Dept. of Computer Science, Virginia Tech (Spring 2007)

 Assisting in running a semester‐long NSF‐funded Scholars of the Future program
 Mentoring eight minority undergraduate students in Computer Science to encourage the pursuit of

graduate studies
 Facilitating networking and fostering communication among participating scholars from Virginia

Tech and Auburn University
 Planning relevant activities for the scholars to enrich their undergraduate experience

Usability Consultant, Meridium Inc., Roanoke, Virginia (Summer and Winter of 2006)

 Performed usability walkthroughs for Meridium’s suite of software systems
 Identified usability problems and suggested redesigns
 Introduced usability best practices and guidelines into the development life cycle

REU Program Coordinator, Center for HCI, Virginia Tech (Summer 2006)

 Assisted in running an eight‐week NSF‐funded Research Experience for Undergraduates program
 Mentored eight undergraduates from seven universities in various aspects of HCI research
 Led discussions and sometimes lectured on a variety of topics in HCI

Graduate Research Assistant, Dept. of Computer Science, Virginia Tech (Summer 2005)

 Part of three‐member research and design team for DCART (Usability Data Collection, Analysis,
and Reporting Tool) project

www.manaraa.com

 219

 Designed tools to capture and support usability engineering life cycle activities and products
 Created a conceptual metaphor that uses multi‐view visualization to make system model intuitive
 Developed lo‐fidelity paper prototypes and conducted lab‐based usability evaluations

Instructor, Dept. of Computer Science, Virginia Tech (Summer 2005/2004)

 Prepared and lectured on a wide range of topics in Human‐Computer Interaction (Junior/Senior‐
level undergraduate course)

 Facilitated and led in‐class activities to practice various phases of usability engineering process
 Supervised semester‐long group projects on developing user interfaces
 Administered and graded tests, projects, and assignments

Graduate Teaching Assistant, Dept. of Computer Science, Virginia Tech

Assisted in teaching, graded assignments and tests, conducted in‐class activities, and sometimes lectured:

 Usability engineering – Graduate course (Spring 2003/2004, Fall 2004/2006)
 Human‐computer interaction – Undergraduate course (Summer 2003, Fall 2003/2005, Spring 2006)
 Graphical user interfaces – Special study senior‐level course (Spring 2005)
 User interface software – Special study graduate course (Fall 2002)

Graduate Research Assistant, Dept. of Chemistry, Virginia Tech (June 2001 – May 2002)

 Developed web‐based and standalone applications in Java to data‐mine, analyze and record
patterns in sets of torsion angles of protein structures

 Gathered and analyzed requirements, designed, implemented, and deployed the application for
use by researchers in Chemistry

Research Assistant, Dept. of Architecture, Virginia Tech (Mar 2001 – Aug 2002)

Duties involved simulation and optimization of architectural structural data

Project Experience

Continuous User Interfaces (CUIs) for multi‐platform user interaction: Currently part of three‐member
research team addressing the problem of task‐disconnect that users face when migrating a task from one
platform to another during a task

 Defined task‐disconnects (break in continuity that occurs when a user attempts to accomplish a task
using more than one computing device) and introduced the concept of CUIs

 Developed a software framework to bridge this task‐disconnect, enabling users to seamlessly
transition their tasks among different devices

 More than two publications in peer‐reviewed conferences (see publications list)

Embodied data objects for tangible interfaces to information appliances: Researched alternative and
novel interaction paradigms to mitigate the increasing complexity of computing devices and platforms

 Applied the notion of using tangible everyday objects as embodied representations of active digital
media

 Prototyped two service‐oriented information appliances (printer and presentation projector) which
provide specific “computing” services as dictated by context of interaction

www.manaraa.com

 220

 Designed a framework to support more types of services with little changes to existing setup
 Work published in peer‐reviewed conference (see publications list)

Visualization of usability data/metrics for usability process improvement: Started and led a research
group that designed and developed Visability, a tool for visualizing usability problem data

 Tool provided problem trends, what‐if analysis capability, aggregate analysis, and ability to view
recurring issues within usability development life cycle

 Advised and mentored an MS student who took this project as his master’s thesis
 Work published in peer‐reviewed conference (see publications list)

Conference design for NSF’s AdvanceVT project: Was part of six‐member research group to design a
conference for women entering academe in the sciences and engineering

 Conducted extensive literature review on learning theories, human cognition, gender bias, etc.
 Conducted interviews and focus groups with women and faculty members in academe to

determine problems and potential solutions for increasing female representation in sciences and
engineering

 Coined the term “Social Affordance” and created four design heuristics grounded in human
information processing theory for use by future conference designers

 Work published in peer‐reviewed journal (see publications list)

Navigation assistant on a PDA: Led a group of four graduate students in the design of a PDA‐based
application to facilitate independent and easy navigation for new visitors to Squires Student Center at
Virginia Tech

 Analyzed the effectiveness of text vs. graphic modes for providing directions

Professional Memberships

 Member, Alpha Epsilon Lambda (AEL), Academic Excellence and Leadership Honor Society for
Graduate and Professional Students

 Member, Upsilon Pi Epsilon (UPE), National Computer Science Honor Society
 Member, Center for Human‐Computer Interaction, Virginia Tech
 Member, ACM Special Interest Group on Computer‐Human Interaction (ACM SIGCHI)

